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The U.S. Food and Drug Administration (FDA) requires clinical trial evidence that is statistically signifi-

cant at the 2.5% level when approving novel drugs, but the agency often uses regulatory discretion when

interpreting these standards. Factors such as target disease severity, prevalence, and availability of existing

therapies are qualitatively considered, yet no quantitative guidelines exist to incorporate such characteristics

into approval decisions.

We propose a novel queueing network model to analyze the drug approval process, which explicitly

incorporates these factors, as well as obsolescence—when newer drugs replace older formulas—through the

use of pre-emptive M/M/1/1 queues.

Given an objective of maximizing health benefits plus the monetary value of drug approval/rejection,

we show that the optimal policy relaxes approval standards for diseases with lengthy clinical trials, greater

attrition rates in the development stage, or low intensity of new drug development. Using publicly available

datasets encompassing all registered clinical trials and FDA approved drugs, we estimate model parameters

for drugs targeting three high-burden diseases: breast cancer, HIV, and hypertension. Our results suggest

that a significance level of 2.5% is too stringent for some diseases yet too lenient for others. A counterfactual

analysis of the FDA’s Fast Track program — which expedites review of therapies for life-threatening diseases

— demonstrates that this program achieves a level of societal health benefit that cannot be attained by

merely changing approval standards.
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1. Introduction

Since its establishment in 1906, the U.S. Food and Drug Administration (FDA) has approved over

1,500 novel drugs, with total sales of approved drugs exceeding $310 billion each year (Kinch et al.

2014, IMS Health 2016). Despite undergoing rigorous evaluation, some FDA-approved drugs were

subsequently shown to be ineffective or even harmful to patients. In September 2004, for example,

the anti-inflammatory drug Vioxx was withdrawn from world markets due to safety concerns over

increased risks of heart attack and stroke, after more than 160,000 patients suffered adverse events

and 38,000 patients died (DrugWatch 2018). The tension between providing sick patients with

potentially beneficial remedies, while protecting consumers from harmful adverse events plays a

significant role in the FDA’s decision-making. In this work, we develop a novel queueing model
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of the drug approval process, starting from development through evaluation, FDA approval or

rejection, and obsolescence or market expiry. Our modeling framework can proffer insights for the

FDA’s approval policy, by permitting flexible approval standards based on differences in disease

severity—a measure of a disease’s impact on both mortality (length of life) and morbidity (quality

of life) in a patient population, prevalence—the number of individuals afflicted with a disease,

intensity of research and development (R&D), and the number of alternative treatments available

for a target condition. In this paper, we refer to a drug as a substance intended to diagnose, cure,

treat, or prevent disease; we use this synonymously with the terms medication, therapy, compound,

molecule, or drug candidate. The FDA also regulates the approval of medical devices, which we do

not explicitly consider in the present study.

Current FDA policy requires pharmaceutical companies to first demonstrate that a candidate

drug displays no evidence of adverse effects—known as drug safety—and second show improvement

in a health outcome related to the target condition—known as drug efficacy. Safety and efficacy

of candidate drugs are usually established by conducting a series of clinical trials, allowing poli-

cymakers to weigh the risk of approving an ineffective drug (type I error) against the chance of

rejecting an effective drug (type II error), using statistical hypothesis testing. Traditionally, the

probability of type I error is set to a tolerable level known as the significance level, α, and the

probability of type II error is adjusted through experimental design such as changing the sample

size or decreasing measurement error (Casella and Berger 2002).

FDA guidelines for drug approval recommend a constant threshold of α= 2.5% for all diseases

(FDA 2017e), which has both benefits and challenges. By prioritizing diseases equally and holding

all drugs to the same efficacy standards, this policy is impartial. The choice of α= 2.5% is arbitrary,

however, and no compelling rationale exists for why this specific value was selected (Sterne and

Smith 2001). By controlling only for the probability of a type I error, this policy ignores the

asymmetric costs of type I and type II errors across diseases. Rejecting an effective medication for

mild pain management, which has many other effective treatment options, for example, is less costly

than rejecting an effective drug for Alzheimer’s disease, for which few treatments currently exist. A

fixed threshold ignores the nuances of clinical trial design (e.g., rate of new molecule discovery, trial

duration, rate of attrition), characteristics of the target patient population (e.g., disease prevalence

and severity), and the post-approval market (e.g., availability of alternative drugs).

In recognition of the limitations of a fixed threshold, the FDA has introduced programs that

provide the agency with regulatory discretion to address some aspects of (i) disease prevalence, (ii)

disease severity, and (iii) the duration of the drug development and approval process.

(i) One regulatory mechanism that considers disease prevalence is the Orphan Drug Act of

1983, which established tax credits and market exclusivity rights for companies creating drugs for
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rare diseases (FDA 2017b). Nevertheless, substantial variation exists in the number of drugs in

development, and rare illnesses are not unique in their lack of viable treatments. Each year, 1.6

million new cancer diagnoses occur in the U.S. and more than 800 cancer-related drugs were in

development in 2015-2016; in contrast, Alzheimer’s disease newly afflicts 476,000 people, yet fewer

than 80 experimental compounds were in development (PhRMA 2015b, 2016b). One approach to

address this imbalance that we explore in this paper, is via the FDA’s choice of significance level.

Raising the significance level—making approval easier—for diseases with few drugs in development

increases the chance of approving a potentially harmful drug, but for patients with few treatment

alternatives, the benefits of allowing more drugs to enter the market may outweigh the costs.

(ii) The FDA partially considers disease severity when making approval decisions. For example,

Lotronex, a drug used to treat irritable bowel syndrome, was voluntarily withdrawn from the

market in 2000 after many patients experienced severe adverse reactions. Based on positive patient

feedback, however, the FDA re-approved Lotronex in 2002 with restricted use (FDA 2016a). The

FDA’s consideration of disease severity is indicated in the Federal Code of Regulations, which

states that “patients are generally willing to accept greater risks or side effects from products that

treat life-threatening and severely-debilitating illnesses, than they would accept from products that

treat less serious illnesses” and that “the benefits of the drug need to be evaluated in light of the

severity of the disease being treated” (Code of Federal Regulations 2018).

(iii) The FDA introduced four incentive Priority Review programs to address the protracted

timeline for drug development and approval, which typically lasts between ten and fifteen years

(FDA 2015). The Fast Track program facilitates faster trial completion and FDA review of can-

didate drugs that treat serious conditions and fill an unmet medical need. Accelerated Approval

allows the FDA to base approval decisions for expedited drugs on surrogate endpoints believed

to reasonably predict clinical benefit, but are not themselves measures of clinical benefit (e.g., a

surrogate endpoint for heart disease is cholesterol level). A Breakthrough Therapy designation aims

to hasten the development and review of drugs that demonstrate a significant clinical improvement

over existing therapies. Finally, Priority Review requires the FDA to take action on a drug applica-

tion within six months, compared to ten months under standard review. In this paper, we explore

a different regulatory policy: vary the FDA’s choice of significance level based on characteristics of

the drug development process for each disease.

When deciding whether to approve or reject a drug, the FDA considers multiple factors, including

performing a risk-benefit assessment of the drug under consideration, but these factors are weighed

qualitatively, making it difficult to ascertain the relative importance of each factor (FDA 2017d).

By developing a model in which the significance level explicitly depends on characteristics of the

drug development process, one can discern the quantitative effect of a given factor on the likelihood
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of approval. Furthermore, the FDA is often accused of fostering opaque approval policies, and a

more objective approach could improve transparency.

The contributions of this paper are as follows:

• We develop a queueing approach to analyze the drug development and approval process,

accounting for characteristics such as disease severity and prevalence, R&D intensity, clinical trial

duration, and the availability of alternative treatments. We model the drug development process

using a series of M/M/∞ queues, and the market for approved drugs as a collection of M/M/1/1

and M/M/∞ queues. Our study, to the best of our knowledge, is the first to formulate the drug

approval process as a network of queues.

• We determine the optimal significance level that maximizes the societal expected net benefit,

which includes the health impact of drugs on the market, as well as monetary values for the correct

decision of approving effective drugs and for the incorrect decisions of approving ineffective (type I

error) and rejecting effective (type II error) drugs. We interpret health impacts as the incremental

gain in Quality-Adjusted Life Years (QALYs) associated with novel drugs and monetary values

as the change in the market capitalization of publicly traded pharmaceutical companies following

news of successful drug approval, rejection, or withdrawal. We show that the optimal significance

level is higher (easier to approve) for diseases with lengthy clinical trials, high rates of attrition,

and low R&D intensity.

• Using publicly available datasets encompassing all registered clinical trials and FDA drug

approvals, we estimate model parameters and determine the optimal significance levels for three

high-burden diseases: breast cancer, HIV, and hypertension. We test model robustness and show

how the optimal significance level relates to characteristics of the development process and post-

approval market. Our numeric results highlight that a one-size-fits-all significance level for drug

approval is sub-optimal on a societal level, and future research on this topic should consider both

pre- and post-approval drug characteristics.

• We perform a counterfactual analysis to evaluate the Fast Track program in terms of health

benefits and monetary values. Using published studies on the effects of Fast Track on clinical trial

duration and FDA review, we estimate parameters for a hypothetical approval process without this

program. Our results indicate that, by bringing drugs to market more quickly, Fast Track increases

both health benefits and societal monetary value. Furthermore, we find that Fast Track attains

a level of health benefit that cannot be achieved by only changing the significance level for drug

approval.

2. Related Literature

Drug Development and Approval. Three oft-cited sources of inefficiency in the current drug

approval process are the high costs of developing candidate drugs, the high rates of attrition in
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the development process, and the lack of transparency in the approval process. The Tufts Centre

for the Study of Drug Development (2014) estimates an average total cost of $802 million to $2.5

billion to develop a candidate drug and bring it to market. Between 2003 and 2011, 7.5% of all

novel drugs that initiated clinical trials ultimately gained approval, with lack of safety and efficacy

accounting for over 60% of all candidate drug failures (Hay et al. 2014). Additionally, the FDA has

been criticized for fostering opaque approval policies. Downing et al. (2014) examine the strength

of clinical trial evidence supporting the approval of novel drugs from 2005 to 2012. Despite the

FDA’s recommendation that drugs should be tested against an active comparator or placebo in

two randomized, double-blind trials, more than 60% of novel drugs were approved on the basis of a

single trial, 10% of trials were not randomized, 20% were not double-blind, and 12% did not employ

an active comparator or placebo. While this demonstrates the agency’s flexibility in considering a

wide range of clinical trial evidence, it obfuscates the agency’s approval criteria. These prior studies

are descriptive in nature and focus on identifying issues in the current drug approval process and

quantifying their financial or health burden. In contrast, our work is more prescriptive and presents

an objective modeling framework that could help inform policy decisions.

Surprisingly, minimal research has been conducted on analyzing the FDA’s decision-making

process for drug approval. One recent exception is by Montazerhodjat et al. (2017), who use

Bayesian Decision Analysis to quantify how the FDA’s approval policy could depend on the burden

of disease and patient preferences. The authors compute the optimal statistical significance level for

the 23 most common types of cancer and argue that the traditional level of α= 2.5% is too low for

rare cancers with few treatment options and short survival times, and too high for prevalent cancers

with many treatment options and long survival times. The choice of significance level in their work

is impacted by clinical trial duration and the frequency with which novel drugs are discovered. Our

work incorporates these characteristics of the development pipeline, but also considers aspects of

the post-approval market, such as substitution between drugs within the same therapeutic class

and obsolescence of older therapies, effects that are ignored in Montazerhodjat et al. (2017).

Randomized Controlled Trials (RCTs). A major bottleneck in the drug approval process

is the requisite sequence of clinical trials. A large body of research focuses on optimal trial design

so as to shorten trial duration or minimize the number of volunteers exposed to a potentially

unsafe drug. Ahuja and Birge (2016) dynamically adjust randomization probabilities of patients to

treatments so that patients are treated as effectively as possible without compromising the ability to

learn about treatment efficacy. Bertsimas et al. (2015) employ discrete linear optimization methods

to construct treatment groups for small samples to allow for more powerful statistical inference.

Small sample clinical trial design is important for ethical reasons, but also logistically, as it is often

difficult to recruit a large number of volunteers for rare disease trials. Montazerhodjat et al. (2017)



Bravo, Corcoran, and Long: Flexible FDA Approval Policies
6

explicitly incorporate the costs associated with treating patients with a potentially harmful drug

and use expected cost analysis to determine the optimal sample size for a balanced two-arm RCT.

Chick et al. (2018) use a Bayesian, decision-theoretic framework to design multi-arm, multi-stage

trials which allow stopping and patient allocation decisions to be made dynamically, based on

observations obtained up to a point in time. Other recent studies leverage existing clinical trial data

to identify potentially effective novel drug combinations or patient groups to target. For example,

Bertsimas et al. (2016) use machine learning to predict chemotherapy outcomes in cancer patients

and suggest new combinations of drug regimens, and Gupta et al. (2018) use robust optimization

to identify patient subpopulations in order to maximize the effectiveness of an intervention. In our

work, we do not explicitly model clinical trial design, but rather we analyze how disease specifics

drive the optimal significance level, assuming a standard balanced two-arm trial design.

New Product Development. The journey of a candidate drug from conception through

research and development, testing, regulatory approval, and post-approval market penetration also

relates to studies on new product development (NPD). See Krishnan and Ulrich (2001) and Killen

et al. (2007) for a comprehensive review. NPD is the process of transforming product concepts into

commodities that can be sold; both the development process and the market stage of NPD have

inspired academic research.

Some studies in the NPD literature examine how time to market is affected by resource-sharing

among projects in development. Adler et al. (1995) model the product development process as

a queueing network, to identify bottlenecks in development and opportunities to reduce time to

market for new products. Our work similarly models the stages of drug development as a sequence

of queues, but we additionally capture characteristics of the post-approval process, such as obso-

lescence among drugs. Adler et al. (1995) take the perspective of a single firm, with the objective

of maximizing profit, while we take the perspective of the social planner, with the objective of

maximizing expected societal benefit.

Other NPD research focuses on the market stage of development, examining questions such as

how products compete for market share. Ding and Eliashberg (2002) use dynamic programming to

determine the optimal number of projects to pursue to maximize expected profit, when the final

products target the same market and compete for revenue. They define the number of projects

pursued by a firm as a decision variable, whereas R&D intensity is an exogenous parameter in our

work. Furthermore, rather than studying market competition for revenue, we examine the role of

obsolescence among FDA-approved drugs targeting the same condition.

3. Drug Development Overview

The current drug approval process in the U.S. consists of a series of stages, beginning with the

discovery of a potential new pharmaceutical compound and ending with the FDA deciding whether
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to grant marketing approval to the drug. See Figure 1 for a summary and average duration of

each stage (PhRMA 2015a). The creation of a new pharmaceutical drug begins with extensive

research of the target disease and identification of a novel chemical compound intended to treat

the illness. Promising candidates are subjected to preclinical analysis, involving laboratory (in

vitro) and animal (in vivo) testing. In addition to screening for potential safety issues, the purpose

of these tests is to study how the candidate drug is eventually processed by the human body

(pharmacokinetics) and to determine appropriate dosing levels.

Figure 1 The FDA drug development and approval process.

Preclinical
Analysis Phase I Phase II Phase III Phase IV

IND
Review

NDA
Review

Experimental
(3-6 years)

Clinical Trial Testing
(6-7 years)

On Market
(13-14 years)

Patent Life
(20 years)

Note. For each new compound, the FDA reviews two applications submitted by the pharmaceutical company: an

IND (Investigational New Drug) and an NDA (New Drug Application).

If a candidate drug raises no safety concerns during preclinical testing, the sponsoring firm can

submit an Investigational New Drug (IND) application to the FDA, presenting a plan for clinical

trial testing. The firm may begin clinical trials within 30 days of filing an IND, provided the FDA

does not respond with objections to the proposed testing plan.

Clinical trials usually consist of three phases, designed to test if the candidate drug is both

safe and effective in humans. Phase I involves testing the candidate drug on healthy volunteers

to observe potential side effects and the drug’s pharmacokinetics (how the drug is metabolized).

Provided that the therapy is well-tolerated by healthy volunteers, the drug can advance to Phase II,

where it is administered to volunteers who suffer from the target illness. The goal is to establish drug

efficacy in sick patients while continuing to monitor side effects, by comparing patients receiving the

candidate drug to those treated with a placebo or standard therapy. The focus of the final stage of

clinical testing, Phase III, is establishing efficacy in a large patient cohort. Additionally, researchers

study how the candidate drug interacts with other medications, how different populations react to

the drug, and which dosage levels are practical.

At any point during the development process, the sponsoring pharmaceutical company may

choose to withdraw the drug from development. Typical reasons for halting development include

the inability to demonstrate efficacy, safety concerns, pharmacokinetic issues, market competition,
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and financial considerations (Arrowsmith and Miller 2013). After completing Phase III trials, the

company can submit a New Drug Application (NDA) to the FDA, consisting of clinical trial results

and a proposal for manufacturing and labeling the medication. The FDA performs a risk-benefit

assessment using this information, including data on demonstrated efficacy and reported adverse

events, and decides whether the potential benefits of the medication outweigh its risks. Companies

may be asked to perform additional testing before being awarded marketing approval (FDA 2014b).

Drugs that ultimately gain FDA approval may then be legally marketed in the U.S and benefit

from patents or exclusivity rights. Patents are granted by the U.S. Patent and Trademark Office

and typically expire 20 years after a sponsoring firm files a patent application, which is usually

before initiating clinical trial testing, although applications can be submitted at any point during

the development process. Exclusivity, or exclusive marketing rights, are granted by the FDA, with

all new drugs receiving five years of exclusivity upon approval. Safety and efficacy of approved

drugs continue to be monitored during post-marketing studies (Phase IV), with any adverse events

caused by the medication reported to the FDA (FDA 2016b). Most approved drugs do not cause

wide-scale adverse events and thus remain on the market as long as the sponsoring firm chooses to

continue manufacturing them. In rare cases, drugs with harmful side effects are withdrawn from

the market either by the developing firm or the FDA (FDA 2017c).

3.1. Randomized Controlled Trial Design

RCTs are the current standard for establishing efficacy of candidate drugs. For simplicity, we

assume that all candidate drugs are tested using a two-arm balanced RCT, a commonly used design

where patients are randomly assigned to a treatment group or a control group, which are equal

in size. Individuals in the treatment arm receive the experimental regimen; those in the control

arm receive standard therapy or a placebo. Before the trial commences, researchers must propose

one or more endpoints—outcomes that represent direct clinical benefit—associated with the target

disease that will be monitored throughout the study (Friedman et al. 2015, Jennison and Turnbull

2000). For example, one endpoint for some oncology drugs is five-year progression-free survival.

The main criteria used by the FDA in evaluating candidate drugs are safety and efficacy. Safety

is assessed by considering the number and type of adverse events experienced by trial volunteers.

Efficacy is assessed by monitoring one or more target disease endpoints, and determining whether

the drug has a statistically significant impact on the endpoint (CDER and CBER 1998).

We present a standard statistical framework for modeling drug efficacy (Section 3.2) but we

do not explicitly model drug safety concerns. We make this modeling choice because the number

of potentially harmful side effects is large, and these effects are usually unforeseen at the trial’s

start (Friedman et al. 2015). In contrast, the number of clinical endpoints used to assess efficacy
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is small, and these endpoints can be objectively measured and must be specified before initiating

the trial. In this work, we assume that one quantitative endpoint is monitored, though in reality

multiple endpoints can be used, and we assume that higher values of the endpoint are associated

with better health outcomes, though a range of desirable values could exist.

3.2. A Statistical Framework for Drug Approval

Consider a two-armed balanced clinical trial with n patients in each arm. Let x1, . . . , xn denote

independent observations of a single quantitative endpoint from patients in the treatment group,

and let y1, . . . , yn denote independent observations from patients in the control group who receive a

standard therapy. We assume that xi is drawn from a distribution with mean µx and variance σ2,

and yi is drawn from a distribution with mean µy and variance σ2 (Jennison and Turnbull 2000).

The assumption of equal variance is made for simplicity and can be easily relaxed.

The quantity δ = µx − µy represents the treatment effect of the candidate drug. Our analysis

focuses on superiority trials, which assumes that the experimental drug has no effect or a positive

effect, compared to the standard therapy. We perform the following hypothesis test, wherein a drug

is deemed effective if the response of the treatment group is larger and statistically different from

the response of the control group, and ineffective otherwise:

H0 : δ= 0 (drug is ineffective) H1 : δ > 0 (drug is effective)

using the following Wald statistic from the observed data:

Zn = (x− y)
√
In

where x= 1
n

∑n

i=1 xi and y = 1
n

∑n

i=1 yi are the sample means, and In = n
2σ2 is known as the infor-

mation of the sample. By the Central Limit Theorem, Zn follows a normal distribution with mean

δ
√
In and variance 1. One then computes the p-value associated with the Wald statistic Zn. If

the p-value is less than a threshold α, then H0 is rejected and the drug is deemed effective. If the

p-value is greater than α, then H0 cannot be rejected, and the drug is considered ineffective.

Let the approval policy corresponding to significance level α be defined as follows: candidate

drugs that complete clinical trials and undergo FDA review are approved if the p-value <α, and

rejected otherwise. Let p be the prior probability that a candidate drug is actually effective (the

alternative hypothesis H1). Given an approval policy α and prior p, we obtain the following joint

probability expressions for approved effective (AE), approved ineffective (AI), rejected effective

(RE), and rejected ineffective (RI) drugs:

πAE(α) = [1−Φ(Φ−1(1−α)− δ
√
In)] p (Approving an effective drug) (1)

πAI(α) = α (1− p) (Approving an ineffective drug)

πRE(α) = Φ(Φ−1(1−α)− δ
√
In) p (Rejecting an effective drug)

πRI(α) = (1−α) (1− p) (Rejecting an ineffective drug)
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Here, Φ and Φ−1 are the cumulative distribution function and inverse cumulative distribution

function, respectively, of the standard normal.

4. A Queueing Framework for the Drug Approval Process

We introduce a queueing network to model the development of candidate drugs targeting a given

condition from clinical trials to post-approval (Figure 2). A summary of model parameters is

provided in Table 1.

4.1. Queueing Network Model

We assume that candidate drugs begin clinical trials according to a Poisson process with rate λ.

Rather than modeling each phase of clinical trials separately, we combine the three phases into

a single “clinical trials” queue. This modeling choice does not change the nature of our insights

and serves to simplify our analysis and results. Drugs either complete clinical trials successfully,

or the sponsoring company halts the trials early. After analyzing data from clinicaltrials.gov, we

found that an exponential distribution is a reasonable approximation for the duration of clinical

trials (see Appendix B for details). Hence, we model clinical trial duration as an exponential race;

namely, the time until trial completion (abandonment) is an exponential random variable with

rate µCT (µAB), and the sponsoring company is said to abandon the trial if the time until trial

completion exceeds the time until abandonment. Therefore, drugs advance to FDA review with

probability µCT
µCT+µAB

or exit the system with probability µAB
µCT+µAB

. We denote the net rate at which

drugs enter FDA review by λ̃= λ µCT
µCT+µAB

and the net trial abandonment rate as µ̃= λ µAB
µCT+µAB

.

After FDA review, a drug is approved if the p-value associated with the clinical trial demonstrat-

ing efficacy is less than the significance level α, and is denied approval otherwise. In our model, the

FDA’s decision is instantaneous, though in reality the review process takes between six months and

Figure 2 Queueing network representing the drug development and approval process.

M/M/∞ µCT

Clinical Trials

New Drug
Candidate

Abandonment

λ λ̃

µ̃

FDA
Review

λAE(α)

K

λAE(α)

K

λAI(α)

Reject

Approve

M/M/1/1 µE
Market exit

or
Obsolescence

Effective Drug Class 1

...

M/M/1/1 µE
Market exit

or
Obsolescence

Effective Drug Class K

M/M/∞ µI Market exit

Ineffective Drugs

Note. λ̃= λ µCT
µCT+µAB

and µ̃= λ µAB
µCT+µAB

.
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two years. This delay could be accounted for by modeling the review stage as an M/M/∞ queue,

but would not substantially change our results. In steady state, the output of the FDA review stage

constitutes a thinning of a Poisson process into four separate and independent Poisson processes.

Using the probabilities in (1), the arrival rates for these Poisson processes are:

λAE(α) = λ̃πAE(α), λAI(α) = λ̃πAI(α), λRE(α) = λ̃πRE(α), λRI(α) = λ̃πRI(α). (2)

After undergoing FDA review, rejected drugs depart the system, while approved drugs enter the

market. Approved ineffective drugs and approved effective drugs differ with respect to how long

they spend on the market. Approved ineffective drugs spend relatively little time on the market

as they are likely discontinued by dissatisfied patients. Approved effective drugs typically spend

decades on the market and may, eventually, become obsolete as newer drugs enter the market.

Given these differences, we model effective and ineffective FDA-approved drugs separately. Inef-

fective drugs are modeled using an M/M/∞ queue, where “service” represents time on the market

1/µI before withdrawal of the product. The market for effective drugs is modeled using a collection

of K parallel preemptive M/M/1/1 queues with an average service time of 1/µE. This preemp-

tion is designed to capture the phenomenon where older drugs become obsolete as newer therapies

gain approval. Drug substitution typically occurs within a pharmaceutical class, meaning there are

usually a small number of drugs that account for the majority of prescriptions within a drug class.

For example, the top five high blood pressure medications (by market share) in 2016 belonged to

five different drug classes (ACE inhibitors, beta blockers, calcium channel blockers, diuretics, and

angiotensin receptor blockers) and collectively accounted for more than 50% of the market (Express

Scripts Holding Company 2017). Due to this relatively high market concentration within a drug

class, we consider the case where at most one drug within a class is on the market. Accordingly,

each M/M/1/1 queue represents a therapeutic class and K captures the number of unique classes

available to treat a particular disease. If a particular drug class contained two or more comparable

drugs, the market share would be divided, but the net benefit to patients would remain largely

unchanged. Note that within a given condition, a given drug falls into a single therapeutic class.

Upon gaining approval, effective drugs are equally likely to belong to any of the K classes,

although in practice the distribution of new drugs across classes is likely non-uniform. Our model

can easily be modified to incorporate this; we focus on the uniform case for simplicity.

For tractability, we focus the analysis on the system in steady state with time invariant parame-

ters. We consider two key components of the FDA’s decision to approve or reject candidate drugs:

the health impact and the monetary value of the drug. The notion that the FDA is concerned with

the health impact of drugs is reflected in the agency’s mission statement, which establishes the

role of the FDA in protecting and advancing public health (Food and Drug Administration 2018j).

Our claim that the FDA also considers the monetary value derived from drugs is in accordance
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with the fact that the FDA conducts economic impact analyses of proposed regulations in which

“both the incremental benefits and costs associated with increasing the stringency of regulation

and the incremental foregone benefits and cost savings associated with decreasing the stringency

of regulation” are estimated and compared (Food and Drug Administration 2018f).

We measure health impacts in QALYs to account for the effects of a drug on both the length and

quality of life of a patient. In accordance with the notion that patient health increases when more

effective treatments are available and decreases if ineffective drugs are prescribed, we associate a

health benefit QE to each effective drug on the market, and a health cost QI to each ineffective drug.

Additionally, each time a new drug is approved or rejected, the market gains or loses value (in U.S.

dollars) according to perceived changes in the lifetime profitability of pharmaceutical companies.

Accordingly, we let CAE denote the monetary gain associated with approving an effective drug,

and let CAI and CRE denote the monetary losses associated with approving ineffective (type I

error) and rejecting effective (type II error) drugs, respectively. The monetary value associated

with rejecting an ineffective drug is normalized to zero. To make the health impact and monetary

values directly comparable, we multiply QALYs by the willingness to pay (WTP), the maximum

amount that an individual would be willing to pay per QALY gained (Drummond et al. 2003).

The optimal approval policy α∗ is chosen to maximize the expected net benefit V (α):

α∗ = arg max
α∈[0,1]

V (α) (3)

where

V (α) =
{

Net health impact ·WTP + Net monetary value
}
.

=
{(
QEE[NE(α)]−QIE[NI(α)]

)
WTP + (CAEλAE(α)−CAIλAI(α)−CREλRE(α))

}
.

The per drug health benefit or cost is multiplied by the expected number of effective or ineffective

drugs, E[NE(α)] or E[NI(α)], respectively. Letting ψE(α) = λAE(α)/(KµE) and ψI(α) = λAI(α)/µI ,

we can write these terms as:

E[NE(α)] =
KψE(α)

1 +ψE(α)
, E[NI(α)] =ψI(α). (4)

Table 1 Summary of key model parameters.

Before FDA review After FDA review

σ Standard deviation of the candidate drug response K Number of unique drug classes on the market
δ Treatment effect of a candidate drug QE Per drug health benefit of an effective drug
p Prior probability that candidate drug is effective QI Per drug health cost of an ineffective drug
n Clinical trial enrollment CAE Per drug monetary gain of approving effective drugs
λ Rate that drugs initiate clinical trials CAI Per drug monetary loss of approving ineffective drugs
µCT Rate that clinical trials are completed CRE Per drug monetary loss of rejecting effective drugs
µAB Rate that firms abandon clinical trials WTP Willingness to pay per QALY

λ̃ Rate that drugs enter FDA review 1/µE Average market life of an effective drug
1/µI Average market life of an ineffective drug
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Each monetary value is multiplied by the corresponding approval or rejection rate, which reflects

the societal benefit (or cost) associated with a new drug. Note that this is a one time gain/loss in

monetary value (e.g., the market value increase of Pfizer upon obtaining approval of Lipitor).

4.2. Model Analysis

We first examine the structure of the optimal approval policy to gain insights into how the pre-

and post-review characteristics of a drug impact the ultimate approval decision. All proofs are

presented in Appendix A.

The following result shows that the optimal significance level α∗ is unique and is the solution to

a non-linear equation.

Theorem 1. The expected net benefit function V (α) is concave in α, and the optimal policy α∗

satisfies the following first order condition:

α∗ = 1−Φ

(
1

δ
√
In

log

(
1− p
p

CAI +WTP ·QI/µI
WTP ·QE/(µE(1 +ψE(α∗))2) +CRE +CAE

)
+
δ
√
In

2

)
. (5)

Theorem 1 demonstrates that the optimal approval policy, α∗, weighs the steady-state monetary

losses and health costs of approving ineffective drugs against the monetary gains (losses) and health

benefits of approving (rejecting) effective drugs. Although no closed form expression for the optimal

policy exists, we can analyze the comparative statics of α∗ using the first order condition.

Proposition 1. The optimal approval policy α∗ is

(a) increasing in QE, CAE, CRE, µI , and µAB,

(b) decreasing in QI , CAI , λ, and µCT ,

(c) increasing in p and decreasing in µE under the additional assumption that ψE(α∗)< 1.

From Proposition 1, we see that the optimal approval policy is more stringent for diseases with

many compounds in development (high λ) and short clinical trial durations (large µCT ), and less

stringent for diseases with high attrition rates (large µAB). Drugs with greater health benefits QE

(due to their ability to increase length or quality of life) or higher monetary rejection costs CRE

(due to a type II error) have easier approval policies compared to drugs with higher monetary

approval costs CAI (due to a type I error). Prolonging the average time that ineffective drugs spend

on the market 1/µI exposes patients to these drugs for longer, and thus disincentivizes approval.

As the prior probability p that drugs are effective increases, or as the average time that effective

drugs spend on the market 1/µE increases, one might expect that the optimal response is to approve

more drugs. However, Proposition 1 implies that this intuition only holds under the condition that

ψE(α∗) = λAE(α∗)/(KµE)< 1, which says that the rate λAE(α∗)/K at which effective drugs in a

given class are approved (see Figure 2) is less than the service rate µE. Because we model the

market for effective drugs as a collection of M/M/1/1 queues, this condition is not needed for
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stability; rather we see that it serves to limit the degree of crowding in the market. To understand

the relationship between market crowding and non-monotonicity of the optimal policy (holding all

other parameters constant), consider the following example, illustrated in Figure 3.

Figure 3 Example of the sensitivity of the optimal significance level α∗ with respect to the effectiveness

probability p if Proposition 1c is not satisfied.
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Note. σ = 1, δ = 0.10, n= 500, λ̃= 8, K = 1, WTP = 1, QE = 1, QI = 0.1, µE = 0.01, µI = 0.10, CAE = 0, CAI = 0,

and CRE = 0. Region I corresponds to 0 ≤ p≤ 0.005, Region II to 0.005< p≤ 0.5, and Region III to 0.5< p≤ 1.

Consider a disease with a high rate of R&D intensity λ̃, and a high health benefit associated with

effective drugs QE relative to the health cost of ineffective drugs QI . For simplicity, suppose that

there is no monetary value associated with approving or rejecting drugs, i.e. CAE =CAI =CRE = 0.

We explain the non-monotonic behavior of the optimal approval policy by dividing Figure 3 into

three regions which are characterized by the effectiveness probability p and the degree of crowding

in the market for approved effective drugs, E[NE(α)]. In this example, let’s define drugs with a

low effectiveness probability (p < 0.5) as long shots, and those with high effectiveness probability

(p≥ 0.5) as safe bets. We consider the market for approved effective drugs crowded if many therapies

are available (E[NE(α)]≈K) or neglected if few are available (E[NE(α)]<<K).

Region I corresponds to diseases with neglected markets and long shot drugs. As the probability

of effectiveness increases, the optimal policy is to approve more drugs (despite their low effectiveness

probability) because of the large health benefits of effective drugs and the paucity of drugs available

to patients. In Region II, drugs are still long shots, but the market is more crowded, so the optimal

policy is to approve fewer drugs as the effectiveness probability increases. This occurs because

of drug obsolescence, which limits the number of drug classes available on the market, resulting

in diminishing marginal health benefits of approving drugs. As the market becomes crowded, the
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marginal health benefits of approving effective drugs is outweighed by the marginal health costs

of approving ineffective drugs; therefore, the optimal policy is to approve fewer drugs. Finally,

in Region III, although the market is crowded and additional drugs have diminishing marginal

health benefits, the candidate drugs are reasonably safe bets, so each new drug approval generates

a positive expected net health benefit. Therefore, the optimal policy in this region is to approve

more drugs as the effectiveness probability increases.

Our analysis thus far assumes a fixed number of unique drug classes K available to treat a

particular disease. We next examine how varying K affects the optimal policy. One can interpret

an increase in the number of drug classes K as corresponding to the approval of a first in class

drug—a therapy that uses a new and unique mechanism of action for disease treatment. By treating

a condition in a novel manner, first in class drugs potentially offer patients a more tolerable set of

side effects or serve a patient population for whom current treatments are inadequate.

In the following proposition, let α∗j denote the optimal policy when there are j drug classes on

the market.

Proposition 2. The optimal approval policies satisfy

α∗0 ≤ α∗1 ≤ · · · ≤ α∗K ≤ · · · ≤ α∗∞
where

α∗0 = 1−Φ

(
1

δ
√
In

log

(
1− p
p

CAI +WTP ·QI/µI
CRE +CAE

)
+
δ
√
In

2

)
(6)

and

α∗∞ = 1−Φ

(
1

δ
√
In

log

(
1− p
p

CAI +WTP ·QI/µI
WTP ·QE/µE +CRE +CAE

)
+
δ
√
In

2

)
. (7)

Proposition 2 states that the optimal approval policy is non-decreasing in the number of drug

classes K, an intuitive result. As K increases, more opportunities exist for different therapy classes

and thus the optimal policy is to ease approval standards to fill the market. While α∗0 is purely

a mathematical lower bound and does not have a direct interpretation in our model, the optimal

policy α∗1 might represent a disease with limited available options, such as an Ebola vaccine or

muscular dystrophy treatment. The upper bound α∗∞, derived by letting the number of drug classes

K approach infinity, represents the optimal policy for a condition such as mild pain, for which a

multitude of therapies are available.

Changing the number of drug classes on the market affects not only the optimal policy, but also

the expected net benefit from approving and rejecting drugs. In the following proposition, let V ∗j

denote the optimal expected net benefit when there are j drug classes on the market.

Proposition 3. The optimal expected net benefit functions satisfy

V ∗0 ≤ V ∗1 ≤ · · · ≤ V ∗K ≤ · · · ≤ V ∗∞,

and, for all K ≥ 1 and for any α,

VK+1(α)−VK(α)>VK+2(α)−VK+1(α).
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The first result in Proposition 3 shows that, intuitively, increasing the number of drug classes K

results in higher expected net benefit due to additional health benefits generated by effective drugs

on the market. We also find that when few drug classes exist (K is low), an increase in K has

a larger marginal effect on expected net benefits compared to when many drug classes exist (K

is high). This suggests that innovation in drug development is particularly important for diseases

with a dearth of available treatments.

5. Numerical Study

To illustrate our queueing network model, we conduct a numerical study using publicly available

drug approval data for three high-burden diseases: breast cancer, HIV, and hypertension. We

compute the optimal approval policies for each disease and compare them to a traditional policy

of α = 2.5%. The goals of this analysis are (i) to understand the impact of drug development

parameters on the optimal policy, and (ii) to demonstrate how our model can be used to gain

insights about disease-specific drug approval recommendations.

5.1. Parameter Estimation

We provide an overview of our model parameter estimation, with a detailed discussion and sources

in Appendix B.

Clinical trial parameters. The pre-FDA review parameters are numerically estimated for

each disease using clinical trial data from clinicaltrials.gov, historical drug approval data

from Drugs@FDA, and NDA approval probabilities from Thomas et al. (2016). We estimate the

clinical trial completion rate µCT using the mean durations of Phase I-III trials. We estimate the

probability that a drug completes all three phases of clinical trials P(Complete clinical trials) and

estimate the clinical trial abandonment rate as µAB = µCT [1−P(Complete clinical trials)]

P(Complete clinical trials)
.

We estimate the NDA submission rate λ̃ using the average rate of drug approval for a disease

(computed using exhaustive lists of approved drugs provided in Appendix Tables C2-C4) and

estimates for the NDA approval probability from Thomas et al. (2016). The clinical trial initiation

rate λ is estimated using λ̃ and P(Complete clinical trials).

The clinical trial information δ
√
In is estimated by assuming that the statistical power of the

trial—the probability of approving a drug conditional on the drug being effective—is 90%, given

a traditional statistical significance level of α = 2.5%. To estimate the probability p that a drug

is effective, we select the value of p that makes the probability of approving a drug in our model

equal to the NDA approval probability estimates in Thomas et al. (2016), assuming α= 2.5%.

Number of drug classes. We identify classes of drugs that are widely recognized among health

care providers. Next, we use current treatment guidelines to remove classes rendered obsolete by

newer therapies. Lists of all drug classes and references are provided in Appendix Table C1.
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Monetary values. We define the monetary gains and losses CAE, CAI , and CRE as the average

change in market capitalization of pharmaceutical firms in response to the approval of an effec-

tive drug, approval of an ineffective drug, and rejection of an effective drug, respectively. We use

published estimates of percent abnormal market returns at the time of initial review, the time a

drug is announced as approvable, the approval (or rejection) announcement day, the day after the

approval announcement, and following market withdrawal (Sarkar and de Jong 2006, Ahmed et al.

2002). We estimate monetary values by combining these published estimates with the market cap-

italization of pharmaceutical companies to reflect the aggregate monetary gain or loss associated

with a drug approval or rejection decision by the FDA. Note that this gain or loss is incurred once

for each drug that is approved or rejected.

Health impacts. We interpret the per-drug health benefits and costs QE and QI as the change

in QALYs associated with one additional effective or ineffective drug on the market, respectively.

We calculate QE as the incremental per-drug per-person gain in QALYs associated with newly

approved drugs, relative to the prevailing treatment option available at the time of FDA review

(estimated by Chambers et al. (2017)), multiplied by the new drug’s expected market size. As we

were unable to obtain estimates of the market share of each class of drugs for the three diseases in

the case study, we assume that all patients with a disease are equally likely to take any of the K

drug classes available. Given this assumption, we estimate the market size as either the incidence

(for acute diseases) or the prevalence (for chronic diseases) of the disease being treated, divided by

the number of drug classes K, so that each drug has the same market share.

To calculate QI , we assume that the total health cost QI/µI is proportional to the total health

benefit QE/µE. We use the ratio CAI/CAE of the monetary losses of approving ineffective drugs to

the monetary gains of approving effective drugs as our constant of proportionality, with the idea

that the relative stock market reactions of approving and withdrawing a drug may also reflect the

relationship between health benefits of effective and costs of ineffective drugs.

Market durations. We estimate the average time that effective drugs spend on the market

1/µE as the sum of the times a drug spends on the market on patent 1/µPAT and as a generic or

off-patent drug 1/µGEN . To calculate 1/µPAT , we assume that drug companies file patents at the

start of preclinical analysis (an average of 4.5 years before Phase I trials), and we subtract the time

in preclinical work and clinical trials from the 20 year standard patent life (PhRMA 2015a). To

calculate 1/µGEN , we examine FDA records of drugs (novel and generic) that were discontinued

for reasons not related to safety or efficacy between the years of 2015 and 2017 (FDA 2017a).

To estimate the average time that ineffective drugs spend on the market 1/µI , we calculate the

average length of time that withdrawn drugs spend on the market before being removed, for each

disease considered. We note that this is likely an underestimate of the true time that ineffective
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drugs spend on the market due to the fact that withdrawn drugs often cause patients harm, which

accelerates their removal from the market. The list of withdrawn drugs and time on the market

was obtained from Drugs@FDA and is included in Appendix Table C5.

5.2. Case Study: Breast Cancer, HIV, and Hypertension

We conduct a numerical study of three high-burden diseases, which collectively accounted for over

10% of all drugs in development in 2016 (Murray et al. 2013, PhRMA 2016a). Parameter estimates

for each disease are summarized in Table 2, with additional details provided in Appendix B

Breast cancer leads to more than 40,000 deaths in the U.S. each year. Of the 250,000 new diag-

noses each year, most patients complete primary treatment in the form of surgery, radiation, and/or

chemotherapy within one year of diagnosis (Breast Cancer Society 2018). Additional hormone or

targeted therapies may be prescribed for several years after primary treatment to reduce the risk

of recurrence. Women with metastatic breast cancer may take some form of oncological therapy

for the remainder of their lives.

HIV, or Human Immunodeficiency Virus, is a virus that attacks the body’s immune system,

leaving individuals at risk for potentially deadly opportunistic infections. Patients typically take

antiretroviral medications, which suppress the amount of virus in the body, slow disease progression,

and substantially prolong life. Currently 1.1 million people in the U.S. are living with HIV, and

more than 6,000 die each year (Centers for Disease Control and Prevention 2018).

Hypertension, or high blood pressure, is a chronic condition, and diagnosed individuals often take

medications to control their blood pressure throughout their life. Hypertension currently affects

106 million people in the U.S. and is a precursor for heart disease, which is responsible for one in

every four deaths (Hall et al. 2015, Centers for Disease Control and Prevention 2017a).

Significant heterogeneity exists in the pre-FDA review timeline across the three diseases (Table

2). Breast cancer has the highest R&D intensity λ, but also the highest clinical trial attrition rate

µAB, resulting in an NDA intensity λ̃ of 1.48 drugs per year. According to Arrowsmith and Miller

(2013), this high rate of attrition stems from difficulty in establishing efficacy for oncology drugs

in trials with relatively short durations. In contrast, hypertension has a low R&D intensity λ of

3.85 drugs per year, but also the lowest attrition rate, leading to the highest NDA intensity of 2.34

drugs per year. The estimated probability p that a drug is effective, conditional on undergoing

FDA review, is similar across the examined conditions, with all estimated values exceeding 0.90.

Substantial variation also exists in the health impact associated with drugs used to treat the three

diseases. Hypertension has the highest societal per-drug health benefit QE, while breast cancer

medications have the lowest. This effect is driven by both the difference in incremental QALY gain,

and the substantially larger market size for hypertension drugs. Effective hypertension drugs also
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spend more time on the market under patent protection due to their short clinical trial durations,

compared to breast cancer drugs which require longer trials, on average. Historically, ineffective

hypertension drugs spend the shortest amount of time on the market, potentially because blood

pressure is more easily monitored, leading to faster public awareness of a drug’s ineffectiveness. The

first case of HIV in the United States was identified in 1981, which may partly explain the paucity

of drug classes for this disease compared to hypertension and breast cancer, for which treatments

have been in development since the 1950s (Department of Health and Human Services 2016).

Using the parameter estimates in Table 2, we calculate the optimal approval policies α∗ for each

disease. Our results, summarized in Table 3, highlight the differences across diseases as well as how

each policy compares to a traditional threshold of α = 2.5%. Our model suggests that a stricter

approval threshold is optimal for hypertension drugs due to their high NDA intensity λ̃ and the

substantial health costs (due to high prevalence) associated with ineffective drugs gaining approval.

In contrast, the optimal threshold for HIV drugs is less stringent due to their relatively low NDA

intensity, high effectiveness probability p, and relative paucity of available treatment alternatives.

Figure 4 depicts the trade-off between monetary value incurred (CAEλAE(α) − CAIλAI(α) −

CREλRE(α)) and the number of QALYs achieved (QEE[NE(α)]−QIE[NI(α)]) for approval policies

ranging from α= 0.01 (far left point) to α= 0.10 (far right point). In these plots, moving to the

upper right represents a desirable policy that increases both monetary value and QALYs. For all

three diseases, increasing α from 0.01 to 0.10 always results in higher monetary value because the

marginal monetary gains from approving effective drugs outweigh the marginal monetary losses of

approving ineffective and rejecting effective drugs. On the other hand, increasing α initially results

in more QALYs due to increases in the number of effective drugs available on the market, but

Table 2 Parameter estimates for selected diseases.

Parameter Breast Cancer HIV Hypertension Source

λ (drugs/year) 9.99 4.80 3.85 clinicaltrials.gov, BIO
µCT (drugs/year) 0.08 0.14 0.31 clinicaltrials.gov
µAB (drugs/year) 0.46 0.28 0.20 clinicaltrials.gov

λ̃ (drugs/year) 1.48 1.60 2.34 BIO
p 0.912 0.985 0.933 BIO
K (classes) 10 6 9 See Appendix Table C1
CAE (billion $) 0.094 0.094 0.094 Ahmed et al. (2002), Sarkar and de Jong (2006)
CAI (billion $) 0.102 0.102 0.102 Ahmed et al. (2002), Sarkar and de Jong (2006)
CRE (billion $) 0.023 0.025 0.024 Ahmed et al. (2002), Sarkar and de Jong (2006)
QE (QALYs) 2,350 12,650 1,766,670 CDC.gov, Chambers (2017), NCI
QI (QALYs) 7,579 23,986 21,975,400 CDC.gov, Chambers (2017), NCI
WTP ($/QALY) 100,000 100,000 100,000 Neumann et al. (2014)
µE (drugs/year) 0.043 0.039 0.036 FDA.gov, Drugs@FDA
µI (drugs/year) 0.128 0.069 0.455 See Appendix Table B6

Note: The clinical trial information δ
√
In is calculated assuming a 90% statistical power level.

Sources: clinicaltrials.gov (National Library of Medicine and National Institutes of Health 2018); Biotechnology Innovation Organi-

zation (BIO) (Thomas et al. 2016); Centers for Disease Control and Prevention (2017b); Centers for Disease Control and Prevention

(2017a); National Cancer Institute (2018a); Food and Drug Administration (2018a)
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Table 3 Optimal policies for selected diseases.

Breast Cancer HIV Hypertension

Optimal Policy α∗ 0.046 0.063 0.023

eventually leads to fewer QALYs because of diminishing marginal health benefits due to market

crowding and drug obsolescence. In the cases of breast cancer and HIV, the optimal policy α∗

achieves more QALYs and a higher monetary value than a traditional policy, meaning that the

optimal policy strictly dominates the traditional policy. On the other hand, the optimal policy for

hypertension achieves more QALYs, but a slightly lower net monetary value.

Figure 4 Comparison of the monetary value (CAEλAE(α)−CAIλAI(α)−CREλRE(α)) and QALYs achieved

(QEE[NE(α)]−QIE[NI(α)]) by different approval policies.
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Note. Each point on the curve represents a different approval policy α. We vary α from 0.01 (far left point in each

plot) to 0.10 (far right point in each plot).

We conduct sensitivity analysis of the optimal approval policies with respect to the nominal

parameter values, displayed in Table 2. We focus on three key parameters for our analysis: the prior

probability p that a drug is effective, the NDA intensity λ̃, and the market duration of effective

drugs 1/µE. The parameter λ̃ was chosen because it encompasses the pre-review parameters λ,

µCT , and µAB. We vary the market duration 1/µE and the prior probability p to further explore

the non-monotonic relationship between these parameters and the optimal policy.

We vary p from 0.5 to 0.99; this range is chosen using the reasoning that the FDA is unlikely to

approve a drug if its prior belief that the drug is effective is less than 50%, and it is also unlikely

that the FDA’s prior is higher than 99% for any drug. We note that if the probability p is equal

to 1, then the optimal policy is to approve all drugs (i.e. α= 1). We vary λ̃ from 1 drug per year

to 4 drugs per year, and 1/µE from 5 years to 30 years.
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For each parameter, and for each disease, we plot the value of the optimal policy, where the

number of drug classes K = 1,5,10,15, and 20, along with the lower and upper bounds α∗0 and

α∗∞ on the optimal policies (denoted in the plots using K = 0 and K =∞, respectively). In the

resulting plots, shown in Figures 5 - 7, we see that the optimal approval policies are increasing in

the number of drug classes K, as indicated in Proposition 2.

Sensitivity to effectiveness probability. As shown in Figure 5, the optimal policy is increas-

ingly sensitive to changes in the prior probability of drug effectiveness p, as p approaches 1, but is

relatively insensitive for 0.5< p < 0.8. Our estimates of the efficacy probability are 0.912 (breast

cancer), 0.985 (HIV), and 0.933 (hypertension), suggesting that our optimal policies may be sensi-

tive to changes in p, and potentially overestimate the true optimal α. Figure 5 also highlights the

trade-off between the number of drug classes K and effectiveness probability p. For example, with

breast cancer, an equivalent optimal policy α∗ is obtained if p= 0.9 and K = 10, or if p= 0.85 and

K = 15. A market with many drug classes (and thus more drug diversity) can withstand a lower

probability of effectiveness, to arrive at the same approval policy α∗ as a market with relatively

fewer unique drug classes but higher effectiveness probability per drug.

Figure 5 Sensitivity of the optimal approval policy to the prior probability p that a drug is effective.
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Sensitivity to NDA intensity. As suggested by Proposition 1, Figure 6 shows that the optimal

approval policy α∗ is decreasing in the rate of NDA submission λ̃. As more candidate drugs go up

for FDA review, approving drugs is increasingly risky because health benefits as having diminishing

marginal returns (due to obsolescence), but health costs have constant marginal returns. As the rate

of NDA submission increases, the monetary losses and health costs of ineffective drugs eventually

exceed the monetary gains and health benefits of effective drugs, so the optimal policy is to approve

fewer drugs to avoid these potential negative outcomes.

Figure 6 shows that the sensitivity of the optimal policy depends on the value of K. For small

values of K, less capacity is available for additional drugs on the market, and thus for any given
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NDA intensity λ̃, it is likely that the market will be crowded (E[NE]≈K). Under this scenario,

there is little benefit in approving more drugs, and thus the NDA intensity has a minor effect

on the optimal policy. In contrast, for diseases with many existing drug classes (large values of

K), the optimal policy is more sensitive to the NDA intensity. When K is large, the market can

support many effective drugs of different classes (e.g. ACE inhibitors, beta blockers, etc.) meaning

that when the NDA intensity is low and the market is not crowded (E[NE] <<K), the optimal

policy approves many drugs to fill the market. Conversely, when the NDA intensity is high and the

market is crowded, the optimal policy is more conservative to avoid costs from ineffective drugs

potentially gaining FDA approval.

In the case that K =∞ (the market for effective drugs is modeled as an M/M/∞ queue), we

see that the optimal policy is insensitive to the NDA intensity λ̃. This occurs because, when the

post-approval phases are modeled as M/M/∞ queues, the NDA intensity has the same marginal

effect on health impacts and monetary values. Modeling the market for effective drugs in this

manner has several drawbacks. First, the fact that the optimal policy is independent of the NDA

intensity λ̃ means that this policy ignores several key characteristics of the drug development

process (rate of clinical trial initiation, rate of clinical trial completion, and rate of attrition in the

development process). Furthermore, the resulting approval policies are unrealistically high, with the

model suggesting policies of α= 0.18 (breast cancer), α= 0.36 (HIV), and α= 0.20 (hypertension).

Figure 6 Sensitivity of the optimal approval policy to the NDA intensity λ̃
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Sensitivity to market duration. Recall from Proposition 1 that the optimal policy is non-

monotonic with respect to the time spent on the market by effective drugs 1/µE. This behavior,

more evident for larger values of K in Figure 7, can be explained by the crowding of effective drugs

on the market. Recall that high rates of market crowding result in more conservative approval

policies because of diminishing marginal health benefits. When the time spent on the market 1/µE
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is short, the expected number of effective drugs E[NE(α)] is small relative to the market capacity

K. As 1/µE begins to increase, the market remains below capacity and the monetary gains and

health benefits of approving additional drugs supersede the monetary losses and health costs, so the

optimal policy makes approval easier. However, as 1/µE continues to increase, the market becomes

saturated to the point where the monetary gains and health benefits of approving drugs no longer

outweigh the monetary losses and health costs, and the optimal policy approves fewer drugs.

Figure 7 Sensitivity of the optimal approval policy to the market duration of effective drugs.
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5.3. FDA Expedited Programs for Serious Conditions

Our modeling framework can also be used to examine the FDA’s expedited programs for serious

conditions: Accelerated Approval, Breakthrough Therapy, Fast Track, and Priority Review. These

programs, whose qualifying criteria and features are summarized in Table 4, aim to benefit patients

suffering from serious conditions by reducing the time to bring new drugs to market. The Accel-

erated Approval program allows drugs to be approved based on surrogate endpoints (e.g, tumor

size, blood pressure), which can substantially reduce the time drugs spend in clinical trials, while

the Priority Review program reduces the duration of NDA review from 10 months to 6 months.

The Breakthrough Therapy and Fast Track programs are designed to expedite both the clinical

trial and review stages by allowing for frequent meetings between the FDA and drug developers,

and by allowing for rolling review, in which portions of an NDA can be submitted at any time.

We focus our analysis on one expedited program (Fast Track), applied to one disease (breast

cancer). Fast Track is chosen because of its impact on both the clinical trial and review durations,

and because the Breakthrough Therapy program (which also affects both clinical trial and review

duration) was only recently introduced in 2012. Breast cancer is selected because 48% of breast

cancer drugs utilize the Fast Track program, compared to 35% of HIV drugs and only 1% of

hypertension drugs (Kesselheim et al. 2015). We perform a counterfactual analysis by estimating the
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Table 4 Overview of FDA expedited programs.

Program Qualifying Criteria Features

Accelerated Approval A drug that treats a serious condition and provides a meaningful Approval based on an
(1992) advantage over available therapies and demonstrates an effect effect on a surrogate

on a surrogate endpoint likely to predict clinical benefit. endpoint.

Breakthrough Therapy A drug that treats a serious condition and that preliminary Intensive guidance on
(2012) evidence indicates may demonstrate substantial improvement drug development;

on a clinically significant endpoint(s) over available therapies. Rolling review.

Fast Track A drug that treats a serious condition and nonclinical or clinical Actions to expedite
(1997) data demonstrate the potential to address unmet medical need. development/review.

Priority Review A drug that treats a serious condition and, if approved, would 6-month FDA review
(1992) provide a significant improvement in safety or effectiveness. (10-month standard)

Notes: Accelerated Approval was established under the 1992 Code of Federal Regulations, Breakthrough Therapy under the Food and
Drug Administration Safety and Innovation Act of 2012, Fast Track under the Food and Drug Administration Modernization Act of

1997, and Priority Review under the Prescription Drug User Fee Act of 1992. Source: (FDA 2014a).

parameters of the FDA review process in the absence of Fast Track, and comparing the monetary

value and QALYs obtainable under this scenario to the current system with Fast Track.

Fast Track is designed to reduce the time spent in clinical trials and NDA review, but not to

affect other aspects of the drug development and approval process (FDA 2014a). In our framework,

we can model this as an increase in the clinical trial completion rate µCT . We assume that only

this parameter is affected by Fast Track, and that the per drug monetary gains and losses, health

benefits and costs, market durations, and effectiveness probability are unchanged. Although Fast

Track may seem like an obvious improvement, its potential downsides include approving more

ineffective drugs and increasing the rate of drug obsolescence post-approval.

Let µ0 denote the clinical trial completion rate under a system in which no drugs participate in

Fast Track. Let µ1 denote the clinical trial rate under a system in which all drugs participate in

Fast Track, and let µCT denote the clinical trial rate under the current system, where 48% of breast

cancer drugs use Fast Track and 52% do not. We denote the current system as having partial Fast

Track. We use the value µCT = 0.08, which is the clinical trial completion rate for breast cancer

estimated in Section 5.2. We assume that the current duration of clinical trials, 1
µCT

is a weighted

average of the duration of clinical trials under a system where all drugs use Fast Track and a

system where none use this program, where the weights correspond to the proportion of breast

cancer drugs utilizing Fast Track (48%) or not (52%). We also set 1
µ1

= 1
µCT
· 0.95 in accordance

with a 2008 report by the Tufts Center for the Study of Drug Development that found that Fast

Track reduced the total average clinical trial and review time by 5% with respect to all drugs.
The curve in Figure 8 shows the trade-off in terms of monetary value and QALYs of varying

α between 0.01 and 0.10 with no Fast Track. We also indicate the monetary value and QALYs

achieved under the current approval system (partial Fast Track) with a fixed policy of α= 0.025.

Compared to no Fast Track, the current system provides more monetary value and QALYs assuming
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Figure 8 Comparison of the monetary value and QALYs achieved under the current system (with partial fast

track) and a system with no Fast Track.
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Note. The approval policy α for the standard system varies from α= 0.01 (far left point) to α= 0.10 (far right point).

α= 0.025. In other words, given a fixed approval policy, the addition of the Fast Track program

dominates the approval process without this program. In the absence of Fast Track, no approval

policy can achieve the QALYs obtainable under Fast Track. Eliminating Fast Track and increasing

the approval threshold to α= 0.065 generates similar monetary value to the current system (because

a similar number of drugs are approved/rejected each year) but significantly fewer QALYs because

drugs spend more time in clinical trial and thus less time on the market.

We assume that Fast Track affects only the clinical trial completion rate µCT , but this program

could also result in a lower prior probability p of drug effectiveness. Shorter clinical trials mean

less time to investigate interactions with other medicines or recruit different patient populations,

while shorter FDA review times might mean less time to evaluate clinical trial results. Assuming a

fixed α= 0.025, we find that for small changes in p, the current system continues to dominate the

approval process with no Fast Track, both in terms of monetary value and QALYs. However, if p

decreases to 0.86 (from p= 0.912) the current system no longer dominates in terms of monetary

value, and if p decreases to 0.84 then an approval system with no Fast Track is strictly preferred.

6. Discussion

Our proposed queueing framework offers several insights into the FDA drug approval process,

demonstrating how the pre-review process and post-approval market could influence a disease-

specific approval policy. Our model accounts for three key contributors to the shortfall of therapies

available to treat some diseases: (i) low innovation in new drug formulation (i.e., a low arrival

rate), (ii) lengthy clinical trials (i.e., a low service rate), and (iii) high rates of attrition in the

development process (i.e., a high abandonment rate). Over the years, the FDA has introduced a

variety of programs designed to address these challenges. Our model could help evaluate the impact
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of these programs on health benefits/costs and monetary gains/losses and, in the case of drugs

that qualify for multiple programs, identify which programs offer the largest societal benefit.

Disease-specific drug approval policies offer a fundamentally different way of addressing imbal-

ances in the number of treatments available to patients. For example, the FDA’s Orphan Drug

Designation policy aims to mitigate the shortage of research funding allotted to rare diseases by pro-

viding incentives, such as tax credits for clinical trial testing, to companies that develop treatments

for these conditions. Another way of addressing low research intensity is to ease approval stan-

dards for diseases with few drugs in the early stages of development (i.e., a low clinical trial arrival

rate). By adjusting approval standards based on disease-specific characteristics, this approach has

the potential to encourage pharmaceutical companies to reduce investment in diseases with many

candidate drugs and instead focus development efforts on drugs that are likely to gain approval.

Our work is related to Montazerhodjat et al. (2017), who use Bayesian Decision Analysis to

find the optimal statistical significance levels for oncology drugs, and compute an optimal level of

17.6% for breast cancer drugs— seven times higher than a traditional level of 2.5%. In comparison,

our model recommends a value of 4.6% for breast cancer. One driver of the discrepancy in these

findings is the difference in how the post-approval market is modeled. We model ineffective drugs

using an M/M/∞ queue and, in an attempt to incorporate obsolescence, we model effective drugs

using a collection of K M/M/1/1 queues, which results in diminishing marginal health benefits.

As a result, our model places more weight on the costs of drug approval and thus recommends

stricter approval standards. While our work accounts for obsolescence among drugs on the market,

Montazerhodjat et al. (2017) ignore these effects and model effective and ineffective drugs in the

same manner, which result in easier less stringent approval policies.

We focus our analysis on drug approval in the U.S., but our framework can be modified to model

drug approval in other regions. Drugs developed in the U.S. and Europe both undergo clinical trial

testing, but the review and approval processes differ substantially. In the U.S., all drugs undergo

centralized review by the FDA, whereas in Europe, there are four possible paths to drug approval:

a centralized process overseen by the European Medicines Agency, application to the regulatory

body of a single European Union (EU) state, application for approval in all EU states following

approval in one state, and independent application in multiple EU states (Van Norman 2016). A

queueing framework such as the one presented in this work could be used to analyze the benefits

of different approval pathways and to compare the European and American systems.

6.1. Limitations

Our study has several limitations. First, drug efficacy is based on a single quantitative endpoint

resulting from a balanced, two-arm randomized clinical trial. Modern trial designs are often unbal-

anced, have more than two arms, and involve multiple endpoints. Our model could be easily
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adapted for unbalanced trials, but incorporating multiple arms and endpoints would require a more

sophisticated hypothesis testing framework and queueing model. With breast cancer, for example,

potential clinical endpoints include the tumor size and time until recurrence, and it is unclear how

these endpoints should be collectively used to establish drug efficacy. However, such disease-specific

complexity could render our model analytically intractable.

Second, we make several simplifying assumptions regarding the FDA’s decision making process.

We do not consider qualitative aspects, such as concerns over clinical trial design nor labeling or

manufacturing capabilities, as possible reasons for denying approval. We also do not consider that

the FDA may request that a firm revise and resubmit an NDA, which occurs in about 30% of

reviews (Downing et al. 2014). Additionally, we assume that the NDA filing and FDA review stage

occur immediately; in reality, these reviews take six to ten months, on average. Our model could be

extended to incorporate such complexities, but would not likely change our main insight regarding

the suboptimality of a one-size-fits-all approval policy.

We make several assumptions when computing the expected net benefit. We assume that all

queues are in steady state and the number of drug classes K is fixed, rather than using a transient

analysis and allowingK to vary with time. The assumption that a queueing system is in steady state

is commonly used because transient analysis is often intractable. We aim to capture obsolescence

and substitution by limiting the number of unique drug classes in the market, but a variety of

other measures could be used; for example, one could consider the number of drugs that exceed a

given market share (e.g., 10%) for a disease.

6.2. Future Work

Our study motivates several directions for future work. Currently, we model drug effectiveness as

a binary variable, where drugs are either effective or ineffective, and we model drugs as having the

same health impacts and monetary values in expectation. One extension is to model effectiveness

as a continuous (or random) variable and/or model the health impacts and monetary values as

random variables in order to account for heterogeneous responses of patients to a given treatment.

Another extension would be to analyze the drug development process using a game theoretic

approach, with the FDA and a pharmaceutical company as players. Conditions under which a

pharmaceutical company should conduct additional clinical trials and resubmit a rejected NDA, or

when they should abandon the failed drug and begin developing a new product, could be explored.

6.3. Conclusions

Faced with regulating thousands of drugs in a nation where millions are afflicted with severe

diseases and advances in medical treatment have improved the quality and length of life, the FDA

must find the correct balance between ensuring the safety and effectiveness of drugs while spurring
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development of novel therapeutics and bringing life-saving products to market in a timely fashion.

Our work offers a transparent, quantitative framework that can be used to assess candidate drugs

based on severity and prevalence as well as characteristics of the drug development process and

existing market. Such a model could augment the complex decision-making and statistical analyses

conducted by the FDA, providing a more customized approach to policy-making.
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Appendix A: Proofs

We suppress the dependence of various terms on α for readability and only explicitly note it when needed
for clarity. For all derivatives, the variable of differentiation is α unless otherwise specified.

Proof of Theorem 1: To show that V (α) is concave in α, we argue that QEE[NE(α)], −QIψI(α),
CAEλAE(α), −CAIλAI(α), and −CREλRE(α) are all concave functions of α, and thus the sum of concave
functions is concave. Direct computation shows that E[NE(α)] is concave increasing in ψE(α) and that
ψE(α) is concave in α. Thus E[NE(α)] is concave. Establishing concavity of the remaining terms is similarly
straightforward. We note that in the case that α> 0, −CAIψAI(α) and −CREλRE(α) are strictly concave in
α and thus so is V (α). �

Proof of Proposition 1: By the Implicit Function Theorem, we have that

∂α∗

∂x
= −
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∂x

∂V ′(α∗)
∂α

(A.8)

where x is the parameter of interest. The fact that V (α) is concave in α means the denominator is negative

and thus the sign of ∂α∗

∂x
is given by the sign of ∂V ′(α∗)

∂x
. We use the equation
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to find the sign of the effect of each parameter on α∗:
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Multiplying both sides by λ̃ > 0 (which does not change the sign) gives
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The second equality is due to the first order condition for α∗. The sign of the last expression is negative due
to the concavity of E[NE] with respect to ψE and the fact that ψE is increasing in α.

We claim that ∂α∗

∂µE
and ∂α∗

∂p
are non-monotonic and that ψE(α∗)< 1 is a sufficient condition to ensure that

∂α∗

∂µE
≤ 0 and ∂α∗

∂p
≥ 0. The proof of this is given by straightforward differentiation:
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The condition ψE(α∗)< 1 is sufficient to guarantee that ∂α∗

∂µE
≤ 0 and ∂α∗

∂p
≥ 0. �

Proof of Proposition 2: We begin by demonstrating that α∗1 ≤ α∗2 ≤ · · · ≤ α∗K . To do this, we show
that V ′K(α∗K+1)≤ 0 for any K ≥ 1. The concavity of VK(α) will imply the desired inequality. Consider the
following expression, where the notation E[NK

E ] and ψKE is used to denote the expected number of effective
drugs when there are K drug classes and the traffic intensity for each class, respectively:
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From the optimality of α∗K+1, we know that V ′K+1(α∗K+1) = 0, and thus noting that (A.22) is negative gives
V ′K(α∗K+1)≤ 0. As this holds for any K, we obtain the desired result.

Consider a system in which K = 0. Applying the same argument as above gives
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Noting that this expression is negative and that V ′0 is concave in α, we see that
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where α∗0 is found by solving V ′0(α) = 0.
Next, consider a system in which K =∞. We demonstrate that α∗K ≤ α∗∞. Note that E[NK

E ] = KλAE
KµE+λAE

,

and thus taking the limit of this expression as K goes to infinity gives E[N∞E ] = λAE
µE

. Once again, we use the
concavity of VK(α) to establish the result. Consider the following expression:
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By the optimality of α∗∞, we have that V ′∞(α∗∞) = 0, and thus V ′K(α∗∞)≤ 0. As a result, we have
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where α∗∞ can be found by solving V ′∞(α) = 0. �
Proof of Proposition 3: We begin by demonstrating that VK(α∗K)≤ VK+1(α∗K+1), which first involves

showing VK(α)≤ VK+1(α) for all α. The following calculation shows that this is the case:
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The series of inequalities VK(α∗K)≤ VK+1(α∗K)≤ VK+1(α∗K+1) completes this demonstration.
Next, we show that VK(α∗K)≤ V∞(α∗∞). To do this, we first show that VK(α)≤ V∞(α) for all α as follows:
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The remainder of the proof follows from the series of inequalities VK(α∗K)≤ V∞(α∗K)≤ V∞(α∗∞).
Next, we show VK+1(α)−VK(α)>VK+2(α)−VK+1(α) by direct computation:

VK+1(α)−VK(α)− (VK+2(α)−VK+1(α)) (A.32)
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� (A.33)

Appendix B: Exponential Assumptions

In order to test the assumption that the duration of clinical trials is exponentially distributed, we downloaded
10,000 (the maximum permitted) phase I, phase II, and phase III clinical trial records from clinicaltrials.gov
with trial start dates from January 2000 to September 2018 (clinical trial registration was not required
before 2000). To ensure that we had a large enough sample size for our analysis, we examined data for
trials targeting any condition rather than limiting ourselves to the three diseases studied in the paper. Using
maximum likelihood estimation, we estimate exponential distribution parameters for each phase of clinical
trials. Figure B1 shows histograms and qqplots of the duration of trials in each phase of clinical trials. Note
that the curve shown in each histogram is the density of the estimated exponential distribution.

Figure B1 shows that the distribution of clinical trial durations in each phase is unimodal and right
skewed. Examining the qqplots, we see that our data fits an exponential distribution well for trials with short
durations, but the data has some trials with longer durations than predicted. For phase I, these are trials
that last more than 3 years, while for phase III, these are trials whose durations exceed 6 years. However,
as these trials constitute 4.6% and 1.6% of the phase I and phase III data, respectively, we believe that the
exponential distribution is a reasonable model for clinical trial duration.

Figure B1 Histograms and qqplots of the duration of phase I, phase II, and phase III clinical trials.
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Appendix C: Parameter Estimation

Clinical trial parameters. For each of the diseases (breast cancer, HIV, and hypertension), we perform
an Advanced Search on clinicaltrials.gov with the following field settings: Search Terms: (insert disease
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here); Study Type: Interventional Studies; Conditions: (insert disease here) ; Interventions: Drug. All other
field settings were left blank. After downloading the data that resulted from this search, we remove trials
that met the following exclusion criterion: (i) Non-drug intervention (Behavioral, Biological, Device, Dietary
Supplement, Other, Procedure, Genetic, Radiation), (ii) Conditions other than the disease of interest, (iii)
Enrollment = 0 or NULL, (iv) Study Completion Date or Study Start Date NULL, (v) Duration of study
= 0 or NULL, (vi) Study Start Date before January 2000 or Study Completion Date after January 2017,
(vii) Title or Condition fields do not indicate relevance of the trial to the disease of interest, (viii) Drug
listed in intervention was not related to treating the disease of interest. Using the trial data that remain
after imposing exclusion criterion (i)-(viii), we estimate the following parameters.
• Rate of clinical trial completion. Let Di denote the mean duration of Phase i trials, where i=I,II,III.

We estimate 1/µCT as DI +DII +DIII.
• Rate of abandonment. Recall that the probability of a drug completing clinical trials is given by

P(complete clinical trials) =
µCT

µCT +µAB
(C.34)

For each drug intervention in our data, we define a binary variable Completed Phase III to be one if there
is a Phase III or Phase IV trial associated with that intervention, and zero otherwise. Our estimate of the
probability of completing clinical trials is the mean of Completed Phase III. Given our estimates of µCT
and P(complete clinical trials), we use equation C.34 to solve for our estimate of µAB.
• Rate of clinical trial initiation and NDA submission. In order to estimate the NDA submission

rate λ and clinical trial initiation rate λ̃, we first note that the rate λAE +λAI at which drugs are approved
is the product of the rate at which NDAs are submitted λ̃ and the probability that a submitted NDA
is approved, P(Approve NDA). We estimate the average rate λAE + λAI at which drugs were historically
approved using exhaustive lists of drugs approved to treat a disease (Tables C2 - C4), and we use estimates
for P(Approve NDA) from Thomas et al. (2016). Using our estimates of λAE + λAI and P(Approve NDA),
we obtain our estimate of λ̃ as λ̃= (λAE + λAI)/P(Approve NDA). The rate at which drugs begin clinical
trials λ is then estimated as λ= λ̃/P(Complete clinical trials).
• Clinical trial information. The clinical trial information δ

√
In is estimated by assuming the statistical

power of the trial—the probability of approving a drug conditional on the drug being effective (given by
πAE/p)—is 90%, given a traditional statistical significance level of α= 2.5%. Mathematically, our estimate
δ
√
In is chosen to satisfy .90 = 1−Φ

(
Φ−1(1− 0.025)− δ

√
In
)
.

• Effectiveness probability. To estimate the prior probability p that a drug is effective, we select the
value of p that makes the probability of approving a drug in our model equal to the estimated probability that
an NDA is approved, assuming α= 2.5%. Thus our estimate p satisfies P(Approve NDA) = πAE(α)+πAI(α) =[
1−Φ

(
Φ−1(1− 0.025)− δ

√
In
)]
p+ (1− 0.025)p.

Monetary Values. To estimate CAE, CAI , and CRE, we multiply the median pharmaceutical market
capitalization Market Cap by the percent change in market capitalization as a result of approving effective,
approving ineffective, and rejecting effective drugs, respectively. We use published estimates from Sarkar and
de Jong (2006) and Ahmed et al. (2002) of percent abnormal market returns at the time of initial review
rinitial, the time a drug is announced as approvable rapprovable, the approval announcement day rapproval day (or
the rejection announcement day rrejection), the day after the approval announcement rday after approval, and
following market withdrawal rwithdrawal. We combine these values with the median pharmaceutical market
capitalization to obtain the following monetary value estimates:

CAE = (rinitial + rapprovable + rapproval day + rday after approval) ·Market Cap (C.35)

CAI = CAE − (rwithdrawal) ·Market Cap (C.36)

CRE = (rinitial + rapprovable− rrejection) ·Market Cap · p. (C.37)

Note that the probability p that a drug is effective appears in our estimate for CRE, but not in our estimates
for CAE or CAI . In the case of approved drugs, we assume that it is possible to distinguish the monetary
value of effective and ineffective drugs using the market reaction to drug withdrawals. In the case of rejected
drugs this differentiation is not possible, so instead we multiply the change in market capitalization by the
probability that a drug is effective.
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Table C1 Drug classifications by disease.

Disease Drug Class Source

Breast cancer Alkylating Agents QLHC (2017), NCCN (2016)
Anthracyclines QLHC (2017), NCCN (2016)
Anti-Estrogen Drugs QLHC (2017), NCCN (2016)
Aromatase Inhibitors QLHC (2017), NCCN (2016)
Combination Chemo QLHC (2017), NCCN (2016)
Ovarian Suppression QLHC (2017), NCCN (2016)
Platinum Drugs QLHC (2017)
Targeted Biological Therapy (HER-2) QLHC (2017), NCCN (2016)
Taxanes QLHC (2017)
Vinca Agents QLHC (2017)

HIV Combination Therapy DHHS (2016)
Integrase Inhibitors WHO (2016)
Non-Nucleoside Reverse Transcriptase Inhibitors WHO (2016)
Nucleoside Reverse Transcriptase Inhibitors WHO (2016)
Pharmacokinetic Enhancers DHHS (2016)
Protease Inhibitors WHO (2016)

Hypertension Angiotensin Converting Enzyme (ACE) Inhibitors AHRQ (2011)
Angiotensin II Receptor Blockers (ARB) AHRQ (2011)
Antiadrenergics AHRQ (2011)
Beta Blockers AHRQ (2011)
Calcium Channel Blockers AHRQ (2011)
Combination Products AHRQ (2011)
Diuretics AHRQ (2011)
Other Renin-Angiotensin System Antagonists AHRQ (2011)
Vasodilators AHRQ (2011)

Sources: Quantum Leap Healthcare Collaborative (2018); National Comprehensive Cancer Network (2016); Depart-

ment of Health and Human Services (2016); World Health Organization (2016); Agency for Healthcare Research and

Quality (Townsend et al. 2011).

Table C2 FDA-approved breast cancer drugs.

Drug (Brand Name) Approval Drug Class

Thiotepa (Tepadina) March 1959 Alkylating Agents
Cyclophosphamide (Cytoxan) May 2008

Methotrexate (Trexall) Aug 1959 Other Chemotherapy
Vinblastine (Velban) Aug 1987
Vincristine (Oncovin) Apr 1988
Fluorouracil 5-FU (Adrucil) Aug 1991
Gemcitabine (Gemzar) May 1996
Irinotecan (Camptosar) Jun 1996
Capecitabine (Xeloda) Apr 1998
Temozolomide (Temodar) Aug 1999
Ixabepilone (Ixempra) Oct 2007
Eribulin (Halaven) Nov 2010
Topotecan (Hycamtin) Dec 2010

Megestrol Acetate (Megace) Aug 1971 Other Hormone Therapy

Cisplatin (Platinol) Dec 1978 Platinum Drugs
Carboplatin (Paraplatin) Mar 1989

Goserelin (Zoladex) Dec 1989 Ovarian Suppression
Leuprolide (Lupron) Apr 1993
Abarelix (Plenaxis) Nov 2003
Buserelin (Suprefact) N/A

Paclitaxel (Taxol) Dec 1992 Taxanes
Docetaxel (Taxotere) May 1996
Paclitaxel (Abraxane) Jan 2005

Vinorelbine (Navelbine) Dec 1994 Vinca Agents

Toremifine (Fareston) May 1997 Anti-Estrogen Drugs
Tamoxifen (Nolvadex) Feb 2003
Raloxifene (Evista) Dec 1997
Fulvestrant (Faslodex) Apr 2002

Trastuzumab (Herceptin) Sep 1998 Targeted Biologics
Bevacizumab (Avastin) Feb 2004
Everolimus (Afinitor) Mar 2009
Pertuzumab (Perjeta) Jun 2012
Ado-trastuzumab emtansine (Kadcyla) Feb 2013
Palbociclib (Ibrance) Feb 2015
Tykerb (Lapatinib) Sep 2015
Ribociclib (Kisqali) Mar 2017
Neratinib maleate (Nerlynx) July 2017

Sources: National Cancer Institute (2018b), Food and Drug Administration (2018e)
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Table C2 FDA-approved breast cancer drugs (continued).

Drug (Brand Name) Approval Drug Class

Abemaciclib (Verzenio) Sep 2017 Targeted Biologics
Olaparib (Lynparza) Jan 2018 (Continued)

Zoledronate (Zometa) Aug 2001 Biphosphonate Therapy
Pamidronate (Aredia) May 2002
Alendronate (Fosamex) Feb 2008
Denosumab (Xgeva) Jun 2010
Ibandronate (Boniva) Apr 2012
Risedronate (Actonel) Jun 2014

Doxorubicin (Adriamycin) Dec 1987 Anthracyclines
Mitoxantrone (Novantrone) Apr 2006
Epirubicin (Ellence) Sep 2008
Liposomal Doxorubicin (Doxil) Feb 2013

Anastrozole (Arimidex) Jun 2010 Aromatase Inhibitors
Exemestane (Aromasin) Apr 2011
Letrozole (Femara) Jun 2011

Docetaxel & Cyclophosphamide N/A Combination Chemotherapy
Docetaxel, Doxorubicin & Cyclophosphamide N/A
Docetaxel & Carboplatin N/A
Paclitaxel & Capecitabine N/A
Docetaxel & Capecitabine N/A
Docetaxel & Carboplatin N/A
Paclitaxel & Carboplatin N/A
Paclitaxel & Capecitabine N/A
Paclitaxel & Carboplatin N/A
Irinotecan & Temozolomide N/A
Gemcitabine & Carboplatin N/A
Ixabepilone & Capecitabine N/A
Doxorubicin & Cyclophosphamide N/A
Doxorubicin, Cyclophosphamide & Paclitaxel N/A
Doxorubicin, Cyclophosphamide & Docetaxel N/A
Epirubicin & Cyclophosphamide N/A
Cyclophosphamide, Doxorubicin, & Fluorouracil N/A
Cyclophosphamide, Methotrexate & 5-Flourouracil N/A
5-Flourouracil, Doxorubicin & Cyclophosphamide N/A
5-Flourouracil, Epirubicin & Cyclophosphamide N/A

Sources: National Cancer Institute (2018b), Food and Drug Administration (2018e)

Table C3 FDA-approved HIV drugs.

Drug (Brand Name) Approval Drug Class

Zidovudine (Retrovir) Mar 1987 Nucleoside
Didanosine (Videx) Oct 1991 Reverse
Stavudine (Zerit) Jun 1994 Transcriptase
Lamivudine (Epivir) Nov 1995 Inhibitors
Abacavir (Ziagen) Dec 1998 (NRTIs)
Didanosine (Videx EC) Oct 2000
Tenofovir Disoproxil Fumarate (Viread) Oct 2001
Emtricitabine (Emtriva) Jul 2003

Saquinavir (Invirase) Dec 1995 Protease
Idinavir (Crixivan) Mar 1996 Inhibitors
Ritonavir (Norvir) Mar 1996
Nelfinavir (Viracept) Mar 1997
Atazanavir (Reyataz) Jun 2003
Fosamprenavir (Lexiva) Oct 2003
Tipranavir (Aptivus) Jun 2005
Darunavir (Prezista) Jun 2006

Nevirapine (Viramune) Jun 1996 Non-Nucleoside
Delavirdine (Rescriptor) Apr 1997 Reverse
Efavirenz (Sustiva) Sep 1998 Transcriptase
Etravirine (Intelence) Jan 2008 Inhibitors
Nevirapine (Viramune XR) Mar 2011 (NNRTIs)
Rilpivirine (Edurant) May 2011

Lamivudine & Zidovudine (Combivir) Sep 1997 Combination
Lopinavir & Ritonavir (Kaletra) Sep 2000 Medications
Abacavir, Lamivudine & Zidovudine (Trizivir) Nov 2000
Abacavir & Lamivudine (Epzicom) Aug 2004
Emtricitabine & Tenofovir Disoproxil Fumarate (Truvada) Aug 2004
Efavirenz, Emtricitabine & Tenofovir Disoproxil Fumarate (Atripla) Jul 2006
Emtricitabine, Rilpivirine & Tenofovir Disoproxil Fumarate (Complera) Aug 2011
Cobicistat, Elvitegravir, Emtricitabine & Tenofovir Disoproxil Fumarate (Stribild) Aug 2012

Sources: AidsInfo (2018), Food and Drug Administration (2018b,e)
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Table C3 FDA-approved HIV drugs (continued).

Drug (Brand Name) Approval Drug Class

Abacavir, Dolutegravir & Lamivudine (Triumeq) Aug 2014 Combination Medications
Atazanavir & Cobicistat (Evotaz) Jan 2015 (Continued)
Cobicistat & Darunavir (Prezcobix) Jan 2015
Cobicistat, Elvitegravir, Emtricitabine & Tenofovir Alafenamide Fumarate (Genvoya) Nov 2015
Emtricitabine, Rilpivirine & Tenofovir Alafenamide Fumarate (Odefsey) Mar 2016
Emtricitabine and Tenofovir Alafenamide (Descovy) Apr 2017
Dolutegravir & Rilpivirine (Juluca) Nov 2017
Bictegravir & Emtricitabine & Tenofovir & Alafenamide (Bictegravir) Feb 2018

Enfuvirtide (Fuzeon) Mar 2003 Fusion Inhibitors

Maraviroc (Selzentry) Aug 2007 Entry Inhibitors

Raltegravir (Isentress) Oct 2007 Integrase
Dolutegravir (Tivicay) Aug 2013 Inhibitors
Elvitegravir (Vitekta) Sep 2014

Cobicistat (Tybost) Sep 2014 Pharmacokinetic Enhancers

Sources: AidsInfo (2018), Food and Drug Administration (2018b,e)

Table C4 FDA-approved hypertension drugs.

Drug (Brand Name) Approval Drug Class

Reserpine (Raudixin) Mar 1955 Antiadrenergic
Guanadrel (Hylorel) Dec 1982
Methyldopa (Aldomet) Feb 1986
Clonidine (Catapres) Jul 1987
Prazosin (Minipress) Sep 1988
Guanabenz Apr 1995
Phentolamine (Regitine) Mar 1998
Terazosin (Hytrin) Mar 1998
Doxazosin (Cardura) Oct 2000
Guanfacine (Tenex) Oct 2012
Phenoxybenzamine (Dibenzyline) Jan 2017
Guanethidine (Ismelin) N/A

Deserpidine (Harmonyl) Apr 1957 Angiotensin Converting
Captopril (Capoten) Feb 1996 Enzyme (ACE) Inhibitor
Enalapril (Vasotec) Jan 2001
Lisinopril (Prinivil) Jul 2002
Moexipril (Univasc) May 2003
Benazepril (Lotensin) Feb 2004
Fosinopril (Monopril) May 2005
Quinapril (Accupril) Jun 2006
Trandolapril (Mavik) Jun 2007
Ramipril (Altace) Jun 2008
Perindopril (Coversyl) Nov 2009
Amlodipine & Perindopril (Prestalia) Jan 2015

Chlorothiazide (Diuril) Sep 1958 Diuretics
Polythiazide (Renese) Sep 1961
Hydrochlorothiazide (Microzide) Jan 1973
Furosemide (Lasix) Oct 1981
Methyclothiazide Jun 1982
Hydroflumethiazide (Saluron) May 1985
Amiloride (Midamor) Jan 1986
Spironolactone (Aldactone) Jul 1986
Triamterene-Hydrochlorothiazide (Dyazide) Dec 1987
Atenolol-Chlorthalidone (Tenoretic) Jul 1992
Indapamide (Lozol) Jul 1995
Bumetanide (Bumex) Nov 1996
Metolazone (Zaroxolyn) Dec 2003
Torsemide (Demadex) May 2005
Ethacrynic Acid (Edecrin) Jul 2015

Deserpidine-Methyclothiazide (Enduronyl) Aug 1961 Combination Therapy
Reserpine-Polythiazide (Renese-R) Oct 1963
Reserpine-Chlorthalidone (Regroton) May 1964
Reserpine-Methyclothiazide (Diutensen-R) Sep 1975
Reserpine-Hydrochlorothiazide (Hydroserpine) Jan 1977
Hydralazine-Reserpine-Hydrochlorothiazide (Hydrap-ES) Sep 1977
Hydralazine-Hydrochlorothiazide (Apresazide) Sep 1977
Timolol-Hydrochlorothiazide (Timolide) Dec 1981
Reserpine-Chlorothiazide (Diupres) May 1982
Reserpine-Hydroflumethiazide Mar 1983
Reserpine-Trichlormethiazide Apr 1983
Methyldopa-Hydrochlorothiazide (Aldoril) Feb 1987
Propranolol-Hydrochlorothiazide (Inderide) Apr 1987
Spironolactone-Hydrochlorothiazide (Aldactazide) Jul 1987
Triamterene-Hydrochlorothiazide (Dyazide) Dec 1987
Clonidine-Chlorthalidone (Combipres) Dec 1987
Amiloride Hydrochlorothiazide (Moduretic) May 1988
Atenolol-Chlorthalidone (Tenoretic) Jul 1992
Enalapril-Diltiazem (Teczem) Oct 1996
Enalapril Felodipine (Lexxel) Dec 1996
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Table C4 FDA-approved hypertension drugs (continued).

Drug (Brand Name) Approval Drug Class

Captopril-Hydrochlorothiazide (Capozide) Dec 1997
Bisoprolol-Hydrochlorothiazide (Ziac) Sep 2000
Enalapril-Hydrochlorothiazide (Vaseretic) Sep 2001
Eprosartan-Hydrochlorothiazide (Teveten HCT) Nov 2001
Lisinopril-Hydrochlorothiazide (Zestoretic) Jul 2002
Benazepril-Hydrochlorothiazide (Lotensin HCT) Feb 2004
Metoprolol-Hydrochlorothiazide (Lopressor HCT) Aug 2004
Moexipril-Hydrochlorothiazide (Uniretic) Mar 2007
Nadolol-Bendroflumethiazide (Corzide) Mar 2007
Amlodipine-Benazepril (Lotrel) May 2007
Quinapril-Hydrochlorothiazide (Accuretic) Aug 2007
Aliskiren-Valsartan (Valturna) Sep 2009
Losartan-Hydrochlorothiazide (Hyzaar) Oct 2010
Aliskiren-Hydrochlorothiazide (Amturnide) Dec 2010
Telmisartan-Hydrochlorothiazide (Micardis) Sep 2011
Irbesartan-Hydrochlorothiazide (Avalide) Sep 2012
Valsartan-Hydrochlorothiazide (Diovan) Sep 2012
Candesartan-Hydrochlorothiazide (Atacand) Dec 2012
Amlodipine-Valsartan (Exforge) Mar 2013
Amlodipine-Atorvastatin (Caduet) Nov 2013
Amlodipine-Telmisartan (Twynsta) Jan 2014
Amlodipine-Valsartan-Hydrochlorothiazide (Exforge HCT) Jun 2015
Olmesartan-Hydrochlorothiazide (Benicar HCT) Oct 2016
Amlodipine-Olmesartan (Azor) Nov 2016
Deserpidine-Hydrochlorothiazide N/A
Guanethidine-Hydrochlorothiazide (Esimil) N/A
Methyldopa-Chlorothiazide (Aldoclor) N/A

Hydralazine (Apresoline) Oct 1978 Vasodilators
Minoxidil Jul 1999
Mecamylamine (Inversine) Mar 2013

Propranolol (Inderal) Nov 1985 Beta Blockers
Penbutolol (Levatol) Dec 1987
Atenolol (Tenormin) Jan 1992
Nadolol (Corgard) Oct 1993
Metoprolol (Lopressor) Dec 1993
Pindolol (Visken) Jan 1994
Acebutolol (Sectral) Apr 1995
Timolol (Betimol) Mar 1997
Labetalol (Trandate) Aug 1998
Betaxolol (Kerlone) Oct 1999
Carteolol (Ocupress) Jan 2000
Bisoprolol (Zebeta) Jun 2001
Esmolol (Brevibloc) May 2005
Carvedilol (Coreg) Sep 2007
Nebivolol (Bystolic) Jul 2015
Penbuterol N/A

Verapamil (Calan) Jul 1992 Calcium Channel Blockers
Nicardipine (Cardene) Dec 1996
Diltiazem (Cardizem) Dec 1999
Isradipine (DynaCirc) Apr 2006
Amlodipine (Norvasc) Jun 2007
Felodipine (Plendil) Apr 2008
Nifedipine (Procardia) Jun 2010
Nisoldipine (Sular) Jan 2011

Aliskiren (Tekturna) Mar 2007 Other Renin-Angiotensin
Eplerenone (Inspra) Aug 2008 System Antagonists

Losartan (Cozaar) Oct 2010 Angiotensin II Receptor
Eprosartan (Teveten) Nov 2011 Blockers
Azilsartan and Chlorthalidone (Edarbyclor) Dec 2011
Irbesartan (Avapro) Oct 2012
Candesartan (Atacand) Jan 2014
Telmisartan (Micardis) Jul 2014
Valsartan (Diovan) Jun 2015
Nevivolol and Valsartan (Byvalson) Jun 2016
Amlodipine and Olmesartan (Olmesartan) Oct 2016

Sources: Food and Drug Administration (2018e)

Table C5 List of FDA-approved drugs that were withdrawn from the market.

Disease Drug Approval Withdrawal Time on Market

Breast cancer Avastin∗ Feb 2004 Nov 2011 7.8 years
HIV Hivid Jun 1992 Dec 2006 14.5 years
Hypertension Ticrynafen May 1979 Jun 1982 2.7 years
Hypertension Posicor Jun 1997 Jun 1998 1.0 year
Hypertension Valturna Sep 2009 Jul 2012 2.8 years

∗ Avastin’s indication for breast cancer was removed but the drug itself remained on the market.
Sources: Avastin - Drugsite Trust (2018a), Hivid - Food and Drug Administration (2018i), Inter-

national Association of Providers of Aids Care (2017), Ticrynafen - Manier et al. (1982), Posicor -

Bradbury (1998), Valturna - Drugsite Trust (2018b), Food and Drug Administration (2016b)


