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Geographic inequalities in access to essential health services are well-documented, extending beyond a

rural-urban divide to include socioeconomic, racial, and other disparities. Proximity to hospitals, clinics,

healthcare providers, and pharmacies varies widely, posing a challenge in determining where to strategically

locate such facilities. Demand for each service depends on the population health in the catchment area,

individual preferences, provider capacity, and other factors. This study introduces a novel estimate-then-

optimize framework combining structural (BLP) demand estimation with a choice-based optimal facility

location model to maximize health service utilization. An advantage of this empirical approach is its reliance

on aggregated data (e.g., market share) rather than individual choices or outcomes.

We illustrate our proposed methodology by examining the Federal Retail Pharmacy Program—a historic

public-private partnership that administered millions of COVID-19 vaccinations—in California. Our demand

estimates reveal that residents of socioeconomically vulnerable communities are more sensitive to travel dis-

tances to pharmacy-based vaccination sites. Augmenting the existing set of pharmacies with 500 strategically

selected retail stores serving lower-income communities could increase predicted vaccinations by 2.9 percent

overall, translating to 770,000 additional vaccinations statewide, and by 5.4 percent in the least healthy

neighborhoods. Even with just 100 optimally chosen stores, this partnership could achieve more than half a

million additional vaccinations—five times the predicted gains associated with randomly selecting 100 new

sites. By integrating a structural demand model with prescriptive analytics, our study provides a systematic,

data-driven approach for policymakers and practitioners to identify where additional health resources are

most needed.
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1. Introduction

Across the United States, access to essential healthcare resources, such as acute care hospital beds,

maternity units, primary care physicians, or pharmacy services, largely depends on where one lives

(Fisher et al. 2008, Bronner et al. 2021). Numerous studies have established that geographical

proximity to healthcare services influences utilization rates, expenditures and, ultimately, patient

health outcomes. One study of Medicare claims data estimated that more than half of the geo-

graphic differences in healthcare utilization is explained by variations in the supply of services,

with the remainder due to patient-related differences in demand (Finkelstein et al. 2016).
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Proximity to a hospital is a determining factor not only for patients seeking emergent care, such

as treatment following a heart attack (Tay 2003), but also for patients seeking routine inpatient

services (Ho 2006, Gowrisankaran et al. 2015, Shepard 2022). The nursing home industry also

reflects this pattern, where patients’ facility choice is highly sensitive to distance, further affecting

patient selection (Gandhi 2023) and local competition (Hackmann 2019). The Supreme Court’s

2022 ruling overturning Roe v. Wade widened the country’s existing spatial disparities in access to

reproductive health services (Myers et al. 2019), particularly for low-income individuals and rural

communities (Bearak et al. 2017).

Excessively long distances to health service providers pose greater challenges for some com-

munities (Dingel et al. 2023). Residents of economically and socially vulnerable areas may face

additional hurdles such as limited time off work, lower vehicle ownership, and limited access to

public transit (Syed et al. 2013). Rural Americans generally face worse health outcomes and shorter

life expectancy (Deryugina and Molitor 2021), owing in part to a lower quantity and quality of

healthcare providers (Finkelstein et al. 2021). While cities have higher concentrations of physicians,

many urban areas face shortages of primary care and specialist providers (Brown et al. 2016).

Outside of hospitals and clinics, pharmacists play a crucial role in dispensing essential medica-

tions, consulting with patients, and administering vaccinations. Nearly five percent of Americans

live within a pharmacy desert—areas with no pharmacies within a one-mile radius (or within ten

miles in rural areas)—and lack access to these essential services (Wittenauer et al. 2024). Phar-

macy deserts are becoming increasingly ubiquitous as more retail pharmacy stores close and the

industry consolidates (Salako et al. 2018). Medicaid reimbursements for a pharmacy’s dispensing

fee are often insufficient to cover the operating costs at low-volume pharmacies, leading to further

closures (Ippolito et al. 2020). While pharmacy deserts are most common in rural areas, some

densely populated regions also lack pharmacists, particularly in Black and Hispanic neighborhoods

Figure 1 Variation in distance to a pharmacy offering COVID-19 vaccinations across zip-codes in California
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(Guadamuz et al. 2021). In California, 2.5 million residents (6 percent) live in a pharmacy desert

(Wittenauer et al. 2024), including 400,000 residents of urban Los Angeles County (Guadamuz

et al. 2021). Figure 1 illustrates the state’s inequality in access to a pharmacy by the Healthy

Places Index (HPI), a composite measure of community well-being based on education, income,

housing, and other social determinants of health (Public Health Alliance of Southern California

2022). Residents in the lowest HPI quartile—the most economically and medically vulnerable—are

twice as likely as those in the top quartile to lack access to an automobile, creating an additional

burden to obtaining care.

Given the documented spatial inequalities in access to health services (Finkelstein et al. 2016),

efforts to mitigate these disparities have urgent policy importance. One potential mechanism, when

services are largely undifferentiated, is better positioning of medical facilities with a well-defined

objective such as maximizing service utilization or minimizing inequities in distance traveled. This

first requires an understanding of individuals’ preferences in selecting where to obtain service. One

notable empirical challenge, however, is that individual-level outcome data are often not available,

given privacy concerns or constraints in obtaining patient health records. For example, disease

prevalence is often reported at an aggregate geographic level, yet policymakers typically lack per-

facility outcome data or detailed information on which patients visited each healthcare facility.

To help inform this policy question, we propose an estimate-then-optimize framework combining

a structural demand model that estimates the effect of distance on the utilization of a specific

healthcare service, with a prescriptive model that optimally selects locations to provide the service

(Figure 2). Our framework addresses a class of problems in healthcare delivery: improving access

to care by optimally selecting a network of providers offering a standard service. Our model aims to

realign a mismatch between the supply of service providers and patient demand for such services.

Consider an undifferentiated service, such as a routine eye examination. Not only are the needs for

such services heterogeneous across patient groups, individual patient preferences (e.g., willingness

to travel) over the set of feasible providers can also vary. Moreover, the availability of these service

Figure 2 Proposed estimate-then-optimize modeling framework
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Table 1 Healthcare contexts for using an estimate-then-optimize framework to maximize access to service

Market characteristic Description Illustrative healthcare setting

Demand (by patients)

Only aggregate data on service utiliza-
tion are available

Vaccination rates by county, cancer
screening rates by state

Heterogeneous patient preferences or
need for health service

Socioeconomic differences in dialysis for
treatment of end-stage renal disease

Supply (by providers)

Spatial variability in proximity to ser-
vice providers

Pharmacy deserts, reproductive health
clinic access, rural hospitals

Unobserved utilization rates by service
provider

Primary care visits by provider, pre-
scription dispensing rates by pharmacy

Limited service capacity per facility Hospital bed capacity, appointment
slots, hemodialysis machines

Undifferentiated health service Dental checkups, blood donations,
mammography screenings, eye exams

providers can widely differ by geographic area, contributing to inequities in utilization across

patient groups. Finally, health outcome data are often publicly available only at an aggregate level,

posing a challenge for estimating patient demand for services, or measuring utilization by service

provider. This class of problems can arise in many healthcare-related contexts, including public

health policy-making and care delivery network design. Table 1 summarizes the key elements of

our context and provides some illustrative examples.

A summary of our approach is as follows. In the first stage, we structurally estimate spatial

demand for an undifferentiated healthcare service by employing a modified random-coefficient

choice (BLP) model with a novel capacity constraint per facility. In the second stage, we integrate

the structural model into a choice-based facility location problem, to identify the optimal set

of locations that maximizes predicted utilization rates. The realized utilization rates are then

estimated through a random sequential simulation. Our framework links structural estimation and

optimization modeling, harnessing aggregate, observational data to enhance prescriptive modeling.

Our approach could be adapted to studying demand for other types of service facilities and provide

insights on policy design, spatial resource allocation, and firm expansion.

We illustrate our proposed framework with a case study on a widespread vaccination campaign.

Utilizing cross-sectional data on COVID-19 vaccination rates by zip code in California, we estimate

a heterogeneous distance sensitivity to vaccination uptake. We perform extensive counterfactual

analyses and demonstrate how policymakers could augment the existing network of pharmacy

partners offering vaccinations. To the best of our knowledge, this is the first work to document a

significant, and heterogeneous, relationship between proximity to a vaccination site and uptake.
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2. Related Literature

Our paper relates to prior work on the accessibility of health services, optimal facility location, and

demand estimation. Each is a substantial body of work spanning multiple fields, and we highlight

the most relevant studies in the following sections.

2.1. Accessibility of Health Services

The concept of healthcare access has been a subject of discussion for the past half-century (Aday

and Andersen 1974). Penchansky and Thomas (1981) outline five dimensions that define the rela-

tionship between patients and health systems: (1) Accessibility concerns the geographical proximity

of healthcare providers to patients, taking into account travel requirements; (2) Availability focuses

on whether the volume and type of services offered adequately meet patient needs; (3) Accommoda-

tion pertains to features of the healthcare system such as appointment scheduling that align with

patients’ needs; (4) Acceptability considers whether patients find providers’ attributes (e.g., gen-

der, race), acceptable and vice versa; and (5) Affordability addresses whether the costs of medical

services are within the financial means of patients or their insurers. Ayer et al. (2014) provide an

overview of research within operations management that examine one or more of these dimensions.

Disparities in healthcare access across socioeconomic groups are widely documented and evident

in different healthcare contexts such as organ transplantation (Wang et al. 2022), use of decision

support systems (Ganju et al. 2020), and medical appointment scheduling (Samorani et al. 2021).

Equitable access to vaccinations has been examined in multiple studies with varying objectives

(Enayati and Özaltın 2020, Rastegar et al. 2021). For instance, Bennouna et al. (2023) combine a

predictive machine learning-based epidemic model with an optimization model to efficiently allocate

vaccines to different populations. A recent review of the literature is available in Dey et al. (2024).

For patients with chronic diseases requiring ongoing treatment, distance to a health provider

can be a major barrier to accessing care. Kelly et al. (2016) summarize research documenting the

adverse effects of living farther from a healthcare facility. For instance, mammography use and

radiation therapy for breast cancer are notably lower for women residing farther from a provider,

even after adjusting for socioeconomic status. Survey data confirm that lack of transportation

correlates with lower healthcare utilization, particularly in rural communities (Arcury et al. 2005).

During the COVID-19 pandemic, access to a nearby retail pharmacy was associated with higher

vaccination rates (Brownstein et al. 2022). Despite a national COVID-19 vaccination campaign

beginning in 2021, vaccine availability remained limited in rural and other socioeconomically disad-

vantaged communities, with a disproportionate impact on minority and elderly populations (Zhong

et al. 2023, Rader et al. 2022). In examining one strategy to reduce such disparities, Chevalier et al.

(2022) demonstrate that including all Dollar General stores in the federal vaccination program



Bravo, Gandhi, Hu, and Long: Estimate-then-optimize in healthcare
6

could expand the share of the population within five miles of a vaccination site—with the largest

benefits accruing to low-income and minority households.

Our case study extends these efforts by precisely estimating demand for a COVID-19 vaccine

under service-provider capacity constraints, and formulating an optimization model to strategically

choose vaccination delivery sites. To the best of our knowledge, this paper is the first to empirically

estimate the heterogeneous vaccination elasticities to travel distance and we propose a quantitative

methodology for evaluating potential policy solutions.

2.2. Optimal Facility Location

The optimization component of our framework relates to the extensive facility location literature,

particularly the Maximal Covering Location Problem (MCLP) (Church and ReVelle 1974, Current

and Storbeck 1988). Detailed reviews of facility location modeling in healthcare can be found in

Daskin and Dean (2005) and Ahmadi-Javid et al. (2017), with further discussion on their applica-

tion in emergency services provided by Jia et al. (2007).

Prior studies have integrated distance sensitivity into MCLP in various healthcare applications.

In a primary care setting, for instance, Nobles et al. (2014) optimally assign patients to pedia-

tricians, constrained by patients’ travel willingness and provider capacity. Relatedly, McCoy and

Johnson (2014) assign patients to HIV clinics, assuming a constant or linear decline in treatment

adherence with increasing distance. Following the 2009 H1N1 influenza pandemic, Heier Stamm

et al. (2017) model flu vaccine accessibility considering geographic factors and dose availability.

Unlike these studies, which assume a homogeneous linear relationship between distance and service

utilization, our approach estimates heterogeneous demand curves empirically.

In cases where demand is stochastic, MCLP models can allow for customers to queue at each

location. Ekici et al. (2014) combine an MCLP with an epidemic model to project the spatial and

temporal spread of an infectious disease. Deo and Sohoni (2015) model the assignment of HIV test-

ing capacity assuming a declining probability of test result collection as turnaround time increases,

and use simulation to evaluate different assignment policies. Relatedly, Jónasson et al. (2017) use a

facility location model with congestion to assign capacity across geographically scattered HIV test-

ing labs. The preceding studies focus on operational planning and logistics, whereas our framework

pertains to more strategic decision-making surrounding equitable access to a healthcare service.

Most facility location modeling papers in healthcare assume the decision-maker is a central

planner who can effectively assign individuals to different facilities. For example, Lee et al. (2013)

create a decision support tool to optimally choose a set of mass medical dispensing sites during a

widespread outbreak, but the authors note the computational challenges of performing a large-scale,

multi-level optimization of selecting dispensing locations and assigning households to facilities.
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During the COVID-19 pandemic, Bertsimas et al. (2022) combine a predictive compartmental

epidemic model with an optimization model to select mass vaccination sites, assign populations

to each site, and allocate vaccines by age group. Our study differs in the combinatorially greater

number of potential vaccination sites, and the inclusion of empirically derived demand estimates.

Alternatively, choice-based facility location models examine how individual preferences, influ-

enced by factors such as distance or service quality, can shape facility location strategies. Similar to

prior studies in the healthcare context (Zhang et al. 2012, Denoyel et al. 2017, Krohn et al. 2021),

we model individual choices using the multinomial-logit (MNL) discrete choice model (McFad-

den 1974). Our proposed formulation is essentially an assortment optimization problem under a

mixture of MNL models, with customer segments having different distance elasticities, along with

capacity and cardinality constraints. Bront et al. (2009) show that the problem is NP-hard if the

number of customer types reaches the number of products. Others have proposed integer program-

ming (e.g., Méndez-Dı́az et al. (2014)) and conic programming (e.g., Sen et al. (2018)) solution

approaches. While prior work focuses on the problem’s theoretical properties and solution method-

ologies, we propose a real-world application that structurally estimates the MNL choice model from

observational data, and uses it within a facility location modeling framework.

2.3. Demand Estimation

The primary input into a choice-based facility location model is the demand curve for obtaining the

healthcare service, as a function of travel distance. To do so, we draw on the established literature

on structural demand estimation in economics. More specifically, estimation follows a random-

coefficient logit model using aggregate choice data, an approach referred to as “BLP” (Berry et al.

1995). The method has been widely used due to its ability to capture individual-level preference

heterogeneity using only aggregate data, and to address endogeneity using instruments.

More advanced implementations of BLP incorporate techniques such as utilizing moments from

disaggregated data (Petrin 2002, Berry et al. 2004), minimizing the impact of parametric error

(Berry and Pakes 2007), or including spatial preferences (Davis 2006), among other variations.

Many applications of BLP in the economics literature use structural models to measure industry

behavior (Nevo 2001), or to quantify specific counterfactual scenarios (e.g., Duch-Brown et al.

(2023) studies online market integration). The operations management literature has gradually

adopted BLP estimation for modeling demand, with applications to the fast-food industry (Allon

et al. 2011), automobile sector (Guajardo et al. 2016), and online physician services (Xu et al.

2021). We expand on the classic BLP method by (1) incorporating capacity constraints via a

fixed-point equation approach, and (2) embedding the estimated demand model into a prescriptive

optimization model.
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3. Estimate-then-optimize Framework

Our framework consists of a microfounded model of consumer demand for a healthcare service that

relies only on aggregated data on service utilization. Demand curves represent the sum of decisions

made by individuals with varying preferences and distances to a healthcare facility. Crucially,

aggregating these individual-level decisions provides a structured way in which to estimate demand

for a health service given the locations of facilities providing that service. Finally, we show how to

incorporate the estimated demand model into an optimization framework to select facility locations

to maximize use of the health service.

3.1. Demand Model

Consider a set of health facility locations L that provide an undifferentiated product or service, such

as eye examinations, vaccinations, or blood collection. Each individual i can decide to receive service

(referred to as an “appointment”) at a location ℓi ∈Li from among the individual’s feasible set of

service locations, Li ⊂ L. The appointment location represents the facility that i most plausibly

considers when choosing whether to receive the service and can vary across settings. For example,

ℓi could be the most convenient location for i that has available service capacity. In contexts with

limited insurance networks, ℓi might be the closest healthcare facility covered by i’s insurance. In

other contexts, such as a centrally organized blood drive or vaccination campaign, ℓi might be a

service location assigned by a central planner.

A key feature of demand that we aim to capture is how consumers’ decisions to use the health

service depend on the proximity of where they live to service locations. Let ai ∈ A denote the

geographic area (e.g., city or zip code) and si ∈ ai denote a smaller geographic subarea within ai

(e.g., Census tract or block) where individual i resides. Let d(si, ℓi) denote a measure of travel

distance between the centroid of si and ℓi. Figure 3 illustrates an example of an area a and depicts

the distances from some of its subareas to healthcare facility locations ℓ and ℓ′. The distances

shown represent how far individuals living in each subarea would need to travel for an appointment

at their closest location.

The distance function d() could be the geodesic distance, driving time, or transit time on pub-

lic transportation. In addition, we allow preferences for the healthcare service to vary both sys-

tematically and idiosyncratically across geographic areas (i.e., across a ∈ A). For example, some

communities have higher needs for the health service based on disease prevalence, or they may be

particularly hesitant to receive medical services.
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Figure 3 Conceptual model of BLP demand estimation given aggregate outcome data by area a (with population

centroid ā) and subarea-level (s1, s2 and s3) variation in distance to a healthcare provider (ℓ and ℓ′)

Area a

ā

ℓ ℓ′

s1

s2

s3

d(s1, ℓ)

d(s2, ℓ)

d(s3, ℓ
′)

3.1.1. Individual Preferences. We introduce the following utility-based binary choice deci-

sion model. Individual i may elect to obtain service at appointment location ℓi and receive addi-

tional utility ui relative to no service:1

ui =Di +Xaiβ+ ξai + ϵi. (1)

The key term in this utility model isDi, which represents the disutility that individual i experiences

from traveling from her subarea si to her appointment at location ℓi. We define Di := d(si, ℓi)αai ,

where αai represents the individual’s area-specific sensitivity to travel distance. The variation we

allow in αai captures across-area variation in the difficulty of traveling for an appointment, such as

differences in the availability of public transportation.2 We denote the parameters characterizing

distance sensitivity by the vector α. Note that the distance function d() measures the individual’s i

distance from the centroid of si to location ℓi, a reasonable assumption given the small geographic

size of subareas. The vector β captures the systematic relationship between the area’s observable

characteristics Xai (e.g., demographics) and average preferences for obtaining the service. The

term ξai represents the idiosyncratic preferences of area ai due to unobservable factors, and ϵi is a

logistic preference that is specific to i.

Under the utility model in equation (1), individual i’s demand follows the classic binary logit

discrete choice model where the probability that she obtains service is:

Pϵ (ui ≥ 0) =
exp(d(si, ℓi)αai +Xaiβ+ ξai)

1+ exp(d(si, ℓi)αai +Xaiβ+ ξai)
. (2)

3.1.2. Demand Estimation. Given individual-level choice data with exogenous variation in

si, li, and Xai , it is straightforward to estimate the demand model from Section 3.1 via maximum

likelihood. However, such favorable settings for estimation are exceedingly uncommon. Notably,

1 Note that to remain as consistent as possible with our empirical case study, equation (1) is not written in fullest
generality. For example, it is straightforward to extend the model to allow β to vary with i (Berry et al. 1995).

2 The model can be extended to allow variation across individuals to capture individual-level factors (i.e., using αi),
such as vehicle ownership or job flexibility.
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when consumer data are highly sensitive or proprietary—which occurs frequently in many health-

care settings—we may observe data only at an aggregate level (Table 1). Under such circumstances,

we can estimate demand as a random coefficient logit model using aggregate data. This approach,

known as “BLP” (Berry et al. 1995), is a common way to estimate demand in settings where

individuals’ choices are not directly observed—yet individual-level factors play a significant role in

each individual’s decision.

We consider the case where service utilization is only observed at the geographic area level.

The BLP approach incorporates factors affecting demand that vary across individuals within a

geographic area by treating these factors as distributions—e.g., the income distribution within an

area or the distribution of household locations within an area. These factors are commonly known

as “random coefficients.” Area-level demand curves are obtained by simply integrating individual-

level demand curves over the distributions of random coefficients.

In our setting, the distance that each individual must travel for their appointment, d(si, ℓi),

varies across individuals within a given area. Correspondingly, travel disutility Di := d(si, ℓi)αai is

a “random coefficient” within the BLP framework. The share of individuals in area a∈A receiving

the service is computed by simply aggregating the demand from individuals living within a:

ρa :=
∑
si∈a

[∫
Pϵ (ui ≥ 0 |Di, si)dF (Di | si)

]
f(si | a) (3)

=
∑
si∈a

[∫ exp (Di +Xaβ+ ξa)

1+ exp(Di +Xaβ+ ξa)
dF (Di | si)

]
f(si | a)

=
∑
si∈a

[ ∑
ℓi∈Li

exp (d(si, ℓi)αa +Xaβ+ ξa)

1+ exp(d(si, ℓi)αa +Xaβ+ ξa)
f(ℓi | si)

]
f(si | a)

=
∑
si∈a

∑
ℓi∈Li

exp (d(si, ℓi)αa +Xaβ+ ξa)

1+ exp(d(si, ℓi)αa +Xaβ+ ξa)
f(si, ℓi | a),

where F (·) and f(·) denote cumulative distribution functions and probability density functions,

respectively. The third equality follows from the definition of Di and the distance measure d(si, ℓi)

is defined by the set of discrete locations in Li.

Equation (3) shows that, in computing the aggregate demand for area a, a key input is the

density f(si, ℓi | a), which implies the distribution of travel cost. This density can be decomposed

into a spatial distribution of the population of a and their appointment locations as follows:

f(si, ℓi | a) := f(si | a)︸ ︷︷ ︸
Spatial

population

f(ℓi | si)︸ ︷︷ ︸
Appointments

. (4)

We assume that the spatial distribution of the population across subareas within area a, f(si | a),
is observed. This assumption is reasonable in many settings given that publicly available data

typically detail the spatial population distribution to an extremely fine level such as Census blocks.
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The second term, f(ℓi | si),3 characterizes the distribution of appointments, which is identified by

a set of parameters, λ, to be estimated. In some cases, the appointment process may be straight-

forward, such as a central planner assigning individuals to their closest facility. In other contexts,

the appointment process may be decentralized or include additional complexities such as noise

or capacity constraints. In our case study, the appointment location distribution f(ℓi | si) and its

parameters λ are determined by a sequential appointment assignment process (discussed in the

next section), allowing each individual to receive an appointment at her preferred service location

with remaining capacity.

The parameters to be estimated are θ := (α,β,λ). The BLP method exploits the insight that for

any given θ, there is one unique set of idiosyncratic shocks (ξa)a∈A that precisely rationalize the

observed area-level service use (Berry 1994). Thus, in enforcing that the area-level service utilization

implied by the demand model (ρa from equation 3) match the observed data, the unobserved

area-level idiosyncratic preferences are an implicit function of θ. We indicate this relationship by

denoting ξa as a function of θ.

Following Berry et al. (1995), we estimate θ using orthogonality conditions:

Ea[Za(θ)ξa(θ)] = 0⃗. (5)

This condition indicates that at the true parameter θ, the implied idiosyncratic preferences for

each area, ξa(θ), are uncorrelated with a set of area-level instruments Za(θ). Since ξa(θ) is a

utility residual from the demand model, equation (5) can be interpreted intuitively as enforcing

that the residual variation in the utility model evaluated at the true θ not be correlated with the

instruments.

The instruments Za must be chosen in each setting so that the moment conditions are both

informative and plausible. For instance, in our case study, Za includes the observable area-level

characteristics Xa, as well as the average distance to service appointments in the area interacted

with area-level demographics. Note that since service appointment locations vary with θ, these

latter instruments vary with θ as well. We therefore denote the instruments Za as a function of θ.

We leverage the moments in equation (5) via the generalized method of moments:4

θ̂= argmin
θ

(
1

|A|
∑
a

Za(θ)ξa(θ)

)′

Φ

(
1

|A|
∑
a

Za(θ)ξa(θ)

)
, (6)

3 Note that we omit the conditioning on a because knowing si uniquely determines the individual’s area, so f(ℓi |
si, a) = f(ℓi | si).
4 Note that ξa is an implicit function of θ through the constraint that the model-implied market shares are equal to
the empirical market shares, i.e., ρa(θ) = ρObs

a . This implicit function can be enforced at each step of the optimization
either through the use of a contraction mapping (Berry et al. 1995) or solver (Reynaerts et al. 2012). Alternatively,
in treating the equality as an equilibrium constraint, the GMM objective can be optimized using an MPEC approach
as in (Dubé et al. 2012).
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where optimal weighting matrix Φ is chosen via efficient two-step GMM (Hansen 1982). A descrip-

tion of the solution approach to obtain θ̂ is provided in Appendix B.1.

3.1.3. Appointment Distribution. Thus far, we have presented the demand model and

estimation quite generally to emphasize its flexibility. In this section, we present a specific model

of sequential appointment assignment used in our estimation. The goal is to obtain an explicit

structural model to connect appointment availability with individual choices.

We assume that an individual’s choice of appointment location ℓi ∈Li is a function of its prox-

imity d(si, ℓi) and her sensitivity to travel distance αai . Under this assumption, no additional

parameters are introduced in the model. In other words, to determine the distribution of appoint-

ments, f(ℓi | si), the only parameters needed are the sensitivity to distance α. Thus, in this setting

no additional parameters (λ) need to be estimated.

To model an individual’s choice of appointment location, we assume a Type I extreme value

(i.e., Gumbel) distribution of idiosyncratic preferences over locations, resulting in an MNL model:

f(ℓi | si,Li) :=
exp(d(si, ℓi)αai)∑

ℓ∈Li

exp (d(si, ℓ)αai)
. (7)

If an individual dislikes traveling longer distances (i.e., αai < 0) then equation (7) implies that i’s

likelihood of choosing location ℓ is decreasing in distance. A reasonable alternative model that takes

this to an extreme is to assume individual i chooses the closest site within Li.
5 A key advantage to

applying an MNL model instead is that it may better capture individuals’ idiosyncratic preferences

in their preferred location, such as preferring a site close to their workplace rather than home.

If all healthcare service locations had infinite capacity, then one could assume that individuals

choose their appointment from among all sites (i.e., that Li = L). In reality, however, health-

care service providers often have limited capacity so each individual’s appointment options might

depend on locations’ available capacity. To capture this complexity in the model, we assume that

appointments are fulfilled sequentially in a random order, where individual i’s set of possible ser-

vice locations (Li ⊂L) are restricted to those with remaining capacity.6 This sequential approach

might capture a random arrival process of identical individual types requesting appointment slots,

such as an online booking of vaccination appointments.

We implement the sequential approach by first generating a random order of all individuals in

the population. Then, we iterate over the individuals and update each choice set Li according to

the appointment location choices (equation 7) and service choices (equation 2) made by individuals

5 In our case study, we verify that our demand estimates are similar under this alternative model (see Appendix C.1).

6 One could further limit an individual’s choice set to locations within a maximum distance to avoid assigning
appointments that are extremely far from each individual’s subarea.
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1, ..., i− 1, so that only locations with available capacity are included in Li. Thus, if a location

ℓ reaches capacity at individual j’s turn, then ℓ is removed from the choice set of all individuals

making decisions after j, i.e., Li ⊂L\{ℓ} ∀i > j. Under this approach, f(ℓi | si) in equation (4) can

be obtained by integrating f(ℓi | si,Li) in equation (7) over the Li for individuals who reside in

subarea si ∈ a.

3.2. Optimization Model: Location Selection

We next formulate an optimization model to determine the optimal set of healthcare service loca-

tions to maximize the predicted demand served across all areas.

Let L⊂L be the decision variable corresponding to the set of locations where service is offered,

termed open locations. Each candidate location ℓ∈L has a capacity denoted by Kℓ, and we assume

that candidate locations are, otherwise, identical. We further assume that policymakers have a

limited budget for the number of locations offering service and include a cardinality constraint on

the number of open locations, i.e., |L| ≤N .

We consider demand at the aggregate subarea level s∈ S. Let ms be the size of the eligible pop-

ulation in subarea s who could receive service. Define ρsℓ as the aggregate share of the population

in subarea s (with parent area a), that obtains service at location ℓ. Based on the demand model

in Section 3.1, we derive an expression for ρsℓ as follows:

ρsℓ : =
1

ms

∑
{i|si=s}

Pϵ(ui > 0 | ℓ, s) f(ℓ | s), if ℓ∈L

=
1

ms

∑
{i|si=s}

[
exp (d(s, ℓ)αa +Xaβ+ ξa)

1+ exp(d(s, ℓ)αa +Xaβ+ ξa)

][
exp(d(s, ℓ)αa)∑

k∈L exp(d(s, k)αa)

]
, if ℓ∈L

=

[
exp (d(s, ℓ)αa +Xaβ+ ξa)

1+ exp(d(s, ℓ)αa +Xaβ+ ξa)

][
exp(d(s, ℓ)αa)∑

k∈L exp(d(s, k)αa)

]
, if ℓ∈L (8)

and zero otherwise. Equation (8) results from equations (2) and (7). Note that the second term

in brackets assumes that individuals select appointment locations without considering available

capacity—i.e., individuals can select any of the L open locations. This is in contrast to Section 3.1.3,

where a sequential appointment fulfillment process that tracks remaining capacity at open locations

is assumed. Instead, we implement a constraint that guarantees that the predicted number of

served individuals at each open location ℓ does not exceed its capacity Kℓ. The optimal set of open

locations L is selected to ensure consistency with the assumption above, where, in expectation, the

demand served at each location is kept below its capacity.

For all subarea-location pairs (s, ℓ), we compute ρsℓ using equation (8) and the demand model

estimates for sensitivity to travel distance α̂a, demographic-based preferences β̂, and idiosyncratic

preferences ξ̂a. To ease notation, let ū(s, ℓ) := d(s, ℓ)α̂a +Xaβ̂+ ξ̂a. Equation (8) simplifies to:
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ρsℓ =

[
exp(ū(s, ℓ))

1+ exp(ū(s, ℓ))

][
exp(ū(s, ℓ)−Xaβ̂− ξ̂a)∑

k∈L exp(ū(s, k)−Xaβ̂− ξ̂a)

]
, if ℓ∈L (9)

=

exp(2ū(s,ℓ))

1+exp(ū(s,ℓ))∑
k∈L exp(ū(s, k))

, if ℓ∈L

and zero otherwise. In equation (9), the term exp(−Xaβ̂ − ξ̂a) in the right bracket cancels out.

Finally, the predicted demand from subarea s to open location ℓ is given by msρsℓ(L).

To formulate the optimization problem, we encode the main decision variable, the set of open

locations L ⊂ L, as a vector of binary decision variables x ∈ {0,1}|L|: xℓ = 1 if ℓ ∈ L and xℓ = 0

otherwise. Thus, we can rewrite ρsℓ as a function of x as follows:

ρsℓ(x) =

exp(2ū(s,ℓ))

1+exp(ū(s,ℓ))
xℓ∑

k∈L exp(ū(s, k))xk

, if
∑
k∈L

xk ≥ 1,

and zero otherwise. We introduce a decision variable ysℓ ∈ [0,1] to allow for partial fulfillment of

demand, that is, ysℓ is the fraction of subarea s demand to location ℓ that is served at that location.

We incorporate the partial fulfillment idea to add flexibility in how demand is served: a location

ℓ can be opened even though its available capacity may be smaller than total demand, so only a

fraction of demand may be served. The corresponding optimization problem is:

(Ploc) max
x,y

∑
s∈S

∑
ℓ∈L

msρsℓ(x)ysℓ (10a)

s.t.
∑
s∈S

msρsℓ(x)ysℓ ≤ xℓKℓ, ∀ℓ∈L (10b)∑
ℓ∈L

xℓ ≤N (10c)

0≤ ysℓ ≤ xℓ, xℓ ∈ {0,1}, ∀ℓ∈L, s∈ S. (10d)

The objective (10a) maximizes the expected demand served across all subareas and locations.

Constraints (10b) ensure that the expected total demand served by an open location does not exceed

its capacity. Note that multiple locations may serve the demand of a subarea, which is determined

by individuals’ preferences reflected in the probabilities ρsℓ(x). Constraint (10c) imposes a total

budget of N open locations. Finally, constraints (10d) ensure that partial fulfillment of a subarea

demand from a location is only possible if the corresponding location is open.

The problem (Ploc) is essentially an assortment optimization problem with cardinality, capacity,

and partial fulfillment considerations. The formulation, however, is computationally challenging

because of nonlinear objective function and constraints, which rely on the choice probabilities

ρsℓ(x). Using ideas from assortment optimization under an MNL choice model (e.g., Bront et al.

(2009)), we next propose an equivalent, and tractable, formulation.
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We introduce an auxiliary variable vs ≥ 0 defined as:

vs =

{
1∑

k∈L exp(ū(s,k))xk
if
∑

k∈L xk ≥ 1

0 o.w.
,

and a binary decision variable bs ∈ {0,1}, which together satisfy the following set of constraints:

vs
∑
k∈L

exp(ū(s, k))xk = bs ∀s∈ S, (11a)

vs ≤Msbs ∀s∈ S, (11b)

bs ≥ xℓ ∀s∈ S, ℓ∈L. (11c)

where Ms = v̄s := maxk∈L[exp(ū(s, k))
−1]. We note that after incorporating these auxiliary vari-

ables, the objective function (10a) and constraints (10b) and (11a) are still nonlinear. Following

the linearization approach proposed by Wu (1997), we define wsℓ := vsxℓ, and introduce the set of

linear constraints:

vs −wsℓ ≤Ms −Msxℓ ∀s∈ S, ℓ∈L, (12a)

wsℓ ≤ vs ∀s∈ S, ℓ∈L, (12b)

wsℓ ≤Msxℓ, ∀s∈ S, ℓ∈L. (12c)

The resulting (equivalent) optimization problem to (Ploc) is:

(P
′

loc) max
x,y,b,v,w

∑
s∈S

∑
ℓ∈L

ms

exp(2ū(s, ℓ))

1+ exp(ū(s, ℓ))
wsℓysℓ

s.t.
∑
s∈S

ms

exp(2ū(s, ℓ))

1+ exp(ū(s, ℓ))
wsℓysℓ ≤ xℓKℓ, ∀ℓ∈L∑

ℓ∈L

xℓ ≤N

Constraints: (11a)− (11c) and (12a)− (12c)

0≤ ysℓ ≤ xℓ, xℓ, bs ∈ {0,1}, vs,wsℓ ≥ 0, ∀s∈ S, ℓ∈L.

For the bilinear terms wsℓysℓ, where wsℓ ∈ [0,Ms], ysℓ ∈ [0,1], we can further relax this non-convex

problem using the standard McCormick inequalities (McCormick 1976). Let’s define zsℓ :=wsℓysℓ,

and include the following constraints:

zsℓ ≤wsℓ ∀s∈ S, ℓ∈L, (14a)

zsℓ ≤Msysℓ ∀s∈ S, ℓ∈L, (14b)

zsℓ ≥wsℓ +Msysℓ −Ms ∀s∈ S, ℓ∈L. (14c)
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Thus, we can approximate the optimization problem (P
′
loc) via the following relaxation:

(P̃loc) max
x,y,b,v,w,z

∑
s∈S

∑
ℓ∈L

ms

exp(2ū(s, ℓ))

1+ exp(ū(s, ℓ))
zsℓ

s.t.
∑
s∈S

ms

exp(2ū(s, ℓ))

1+ exp(ū(s, ℓ))
zsℓ ≤ xℓKℓ, ∀ℓ∈L∑

ℓ∈L

xℓ ≤N

Constraints: (11a)− (11c), (12a)− (12c), and (14a)− (14c)

0≤ ysℓ ≤ xℓ, xℓ, bs ∈ {0,1}, vs,wsℓ, zsℓ ≥ 0, ∀s∈ S, ℓ∈L.

Here b, v, w, and z are auxiliary variables used to linearize and approximate the original problem

(Ploc). The resulting formulation (P̃loc) is a mixed-integer linear program, amenable to commercial

optimization solvers.

3.3. Counterfactual Evaluation

The primary outcome of (P̃loc) is the set of optimally chosen locations, captured by x̃∗ and the

corresponding L̃∗ := {ℓ∈L|x̃∗
ℓ = 1}. This optimization problem, however, assumes individuals select

service locations simultaneously while satisfying capacity constraints only in expectation. This

contrasts with the sequential decision-making often observed in reality, where individuals take

into account locations’ remaining capacity when making their choices. While direct optimization

of this sequential decision-making process is computationally intractable, we can evaluate the

performance of the chosen locations, L̃∗, more realistically by using the sequential appointment

assignment process used in the demand estimation (Section 3.1.3). To do so, we first randomly

order all individuals in the population. Then, each individual selects their appointment location,

and whether to obtain service, among the open locations L̃∗ with remaining capacity, according

to the estimated MNL probabilities. Once a site reaches its capacity, it is removed from the set

of open locations for all subsequent individuals. Hence, for a given L̃∗, we report the predicted

demand served under the sequential appointment fulfillment process as the main outcome of our

approach.

4. Case Study: COVID-19 Vaccine Distribution in California

Seeking to expand COVID-19 vaccination distribution points, in early 2021, the U.S. government

launched the Federal Retail Pharmacy Program (FRPP), a partnership with 21 national pharmacy

chains and independent pharmacy networks. By late-August 2023, nearly two years after the pro-

gram launched, more than 300 million doses were administered through FRPP, across 41,000 retail

locations nationwide (CDC 2023). Nearly half of all Americans live within one mile of a pharmacy
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Figure 4 Zip code-level COVID-19 vaccination rates in California, by HPI quartile (as of March 1, 2022)

0.65 0.71 0.74 0.85

0.00

0.25

0.50

0.75

1.00

Bottom 25% 25−50% 50−75% Top 25%
Healthy Places Index (quartile)

V
ac

ci
na

tio
n 

R
at

e

Note: Numbers above each boxplot are aggregated vaccination rates across all zip codes within each HPI quartile.

offering COVID-19 vaccinations and 89% live within five miles, yet travel distances vary widely—

particularly for Black communities who often encounter distances in excess of ten miles (Berenbrok

et al. 2021). This disparity extends beyond rural locales, with limited COVID-19 vaccination access

points documented among communities of Color and those with chronic health conditions (Rader

et al. 2022). Figure 1 depicts the inequalities in vaccination access within California, with the

most vulnerable communities in the bottom HPI quartile encountering travel distances seven times

greater than those in the top quartile. Vaccination rates are 20 percentage-points lower in the

bottom HPI quartile (Figure 4), in part due to these structural barriers to vaccination.

Employing our two-stage estimate-then-optimize framework, we evaluate the effects of expanding

FRPP to include partnerships with other organizations, to help alleviate a major barrier to vaccina-

tion access. Using an estimated spatial demand model (stage 1), we predict COVID-19 vaccination

uptake under counterfactual scenarios of offering vaccines at these additional locations—which are

optimally selected by the facility location model (stage 2). Our case study offers insights into how

a national vaccine campaign might be strategically improved, underscoring the framework’s utility

in various healthcare settings.

Our primary analysis focuses on dollar store partnerships, but we also examine other private

(e.g., Starbucks) and public (e.g., high schools) partners. Following the launch of FRPP in 2021,

the CDC director and Dollar General confirmed reports of a potential partnership to administer

COVID-19 vaccines at stores. Dollar General, known for its discounted prices and wide product

selection, has thrived by locating in areas with little retail competition (Wolfrath et al. 2018). The

chain operates over 17,000 stores in 46 states, nearly double the next largest private retailer offering

COVID-19 vaccinations, and 75% of its stores serve rural communities (Bomey 2021, Roberts 2021).

Two other chains, Dollar Tree and Family Dollar, each operate over 7,000 stores nationwide. These
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discount stores often locate in communities underserved by retail pharmacies, creating a promising

opportunity to improve vaccination access for low-income households (Chevalier et al. 2022).

4.1. Data

Our case study combines data across three domains: vaccination rates, spatial demographics, and

store locations.

Vaccination rates. We obtain the most granular population-level COVID-19 vaccination data

available in California: weekly vaccinations administered by zip code (California Department of

Public Health 2021). Our main outcome variable is the proportion of the population aged 5+ who

are fully vaccinated as of March 1, 2022.

Demographics. Demographic data are obtained from two sources. Our main demographic vari-

able of interest, the Healthy Places Index (HPI), is a composite score constructed by the Public

Health Alliance of Southern California (2022) that measures the well-being of a community. An

area’s HPI index is a weighted score across eight domains: socioeconomics, education, health care

access, housing, neighborhood conditions, pollution/clean air, social factors, and transportation

access (Maizlish et al. 2019). We group each region (e.g., Census tract or zip code) into HPI

quartiles, where the top 25% are the healthiest and the bottom 25% are the most vulnerable.

We use population estimates for residents aged 5+ for each of California’s 377,023 Census blocks,7

small geographic regions contained within a Census tract, with approximately 100 residents on

average. We also obtain the geographic coordinates of blocks’ population centroids, thus character-

izing the entire spatial distribution of California’s vaccine-eligible population (age 5+) of 37,336,716

(US Census Bureau 2019). Additional demographic data are obtained from the 2019 American

Community Survey for 1,751 zip codes in California. Key variables include race/ethnicity, unem-

ployment rate, poverty rate, college graduation rate, median household income, median home value,

population, population density, and health insurance status. Appendix Table A1 gives summary

statistics.

Vaccination locations. Location information including the geographic coordinates (latitude

and longitude) of the 4,035 retail pharmacies in California participating in FRPP are from https:

//www.vaccines.gov/ as of June 2021. Geodesic distances are computed between each vaccination

site and the population centroid of each Census tract or block (US Census Bureau 2019). We

do not include other dispensing sites such as mass vaccination centers or primary care offices

because pharmacies accounted for 90% of COVID-19 vaccinations administered nationwide (IQVIA

Institute for Human Data Science 2023).

7 We only consider Census blocks with non-zero population.

https://www.vaccines.gov/
https://www.vaccines.gov/
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Potential alternative vaccination sites include the three largest dollar store chains (Dollar Gen-

eral, Dollar Tree, and Family Dollar), which collectively operate 1,016 stores across California.

Dollar store locations (latitude and longitude) are from ScrapeHero (2021). Public school locations

are obtained from California Department of Education (2020). All other locations are obtained

from Safegraph.

4.2. Implementing the Estimate-then-Optimize Framework

We describe the model parameters and include specific details on how to operationalize each step

of the framework.

4.2.1. Estimating Demand for Vaccinations. Geographic areas (A) correspond to zip

codes because the primary outcome, COVID-19 vaccination rates (ρobsa ), is available only at the

zip code-level. Subareas (S) correspond to Census blocks, which are typically less than one acre

in size, allowing us to account for variations in travel distance at an extremely granular level. The

set of locations L corresponds to pharmacies participating in FRPP. We compute the geodesic

distance d(s, ℓ) from the centroid of each block s to every vaccination location ℓ. This assumes that

all residents in a block share the same travel distance to any given site, a reasonable assumption

given Census blocks’ small size.

Here, we assume the sensitivity to travel distance αai varies by HPI quartile H := {1,2,3,4},

i.e., αai = αh(ai) where h(ai) denotes the HPI quartile of the zip code in which individual i resides.

Thus, α is a vector of four parameters representing the distance sensitivities for each HPI quar-

tile. Consequently, the model allows travel distance disutility to vary with socioeconomic status.

For example, proximity may play a greater role in the vaccination decisions of lower-HPI indi-

viduals who face additional barriers such as limited access to transportation, online appointment

scheduling, or time off work.

An individual’s utility from vaccination (equation 1) incorporates zip code-level demographic

variables, Xai . These include race/ethnicity composition (Black, Asian, Hispanic, and Other),

composition of health insurance (employer-provided, Medicare, Medicaid, and others), fraction of

college graduates, unemployment rate, poverty rate, median household income, median home value,

and population density. Including these factors in the utility model helps capture the influence that

community demographics exert on latent preferences for vaccination.

In our case study, we limit each subarea’s set of possible vaccination locations to be its M

closest sites, to ease computation and avoid diluting the choice problem with excessively distant

appointment locations. In both the estimation and optimization stages, individuals can only receive

https://www.safegraph.com/
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an appointment at one of these M locations.8 In our main analysis, we set M = 5, and as a

robustness check, we varyM and report demand estimates (Appendix C.1) and optimization results

(Appendix C.2).

Capacity per vaccination site is assumed to be constant across locations Kℓ = 10,000 ∀ℓ ∈ L.

We determine this value so the resulting supply (40.35 million vaccines) is sufficient to cover

California’s vaccine-eligible (aged 5+) population of 37,336,716. We also vary Kℓ ∈ {8,000, 12,000}

in sensitivity analyses (see Appendix C.1 for demand estimates and Appendix C.2 for optimization

results).

Following Section 3.1.3, we model the allocation of appointments among individuals given capac-

ity constraints. To do so, we first randomly order all 37.34 million individuals in California. Then,

individuals are assigned appointments and make their decisions to vaccinate (or not) in that order.

Each individual’s set of possible vaccination locations Li is determined by the available capacity at

nearby sites after all previous individuals have had the chance to obtain a vaccination. We test the

robustness of our demand estimates to the appointment assignment mechanism in Appendix C.1.

Our initial demand estimates measure travel costs using log-distance between each subarea and

vaccination location. This functional form may cause the optimization model to prioritize reducing

already small travel distances, while undervaluing the importance of reducing longer travel dis-

tances. To address this potential bias, we conduct a robustness check by considering an alternative

distance function that treats all distances below a threshold d̄ as constant. We explore various

thresholds d̄= {0.5 miles, 1 mile} (see Appendix C.1 for demand estimates and Appendix C.2 for

optimization results).

For computational tractability, we formulate the facility location problem at the Census tract-

level. We obtain demand estimates for 8,000 Census tracts as follows. First, we compute d(s, ℓ)

between all Census blocks and vaccination sites (FRPP pharmacies and partner locations). Second,

we compute utility estimates at the block-level using the estimated demand model parameters.

Finally, we aggregate demand to the Census tract-level and compute utility estimates at this level,

which serve as inputs to the optimization model (see Appendix B.2 for details).

4.2.2. Optimizing Location Selection. Our primary counterfactual analysis evaluates pre-

dicted vaccination rates if vaccinations are offered at optimally selected dollar stores, out of the

1,016 possible locations statewide. Additionally, we assess partnering with selected high schools

(out of 1,225 locations statewide) or Starbucks coffee houses (out of 3,172 locations statewide), as

8 To estimate demand via BLP, all individuals must be assigned an appointment location. In the unusual case where
all M closest locations are at capacity, we assign the individual to the Mth location. While this assumption does not
strictly respect capacity constraints, we find that our demand estimates are similar as M increases (see Appendix C.1
for discussion).
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detailed in Appendix C.2. We report the benefits of these partnerships relative to a benchmark

“Pharmacy-only” policy, which utilizes only the N = 4,035 pharmacies participating in FRPP in

California as of June 2021. For simplicity, we assume that partner locations have the same capacity

as the existing pharmacies, though this assumption could be relaxed.

We let L include all FRPP pharmacies and any new candidate locations. The optimization model

(P̃loc) selects the optimal set of new vaccination sites to open, assuming all existing pharmacies

remain operational; we refer to this as the network expansion scenario. Let A denote the number

of additional partner locations to be selected. We consider A = {100, 200, . . . , 1000} locations,

resulting in N = 4,035 +A total vaccination sites. We let xℓ = 1 if ℓ is a FRPP pharmacy. The

primary outcome measure is the predicted increase in vaccinations compared to the Pharmacy-only

benchmark. Evaluating the program’s expansion in this manner provides valuable insights into

budgetary or operational constraints (e.g., staffing costs) and could inform the design of a pilot

expansion program.

Finally, to maintain consistency we employ the same parameter values throughout the estimation

and optimization stages. We perform extensive sensitivity analyses with respect to various param-

eter values and utility forms to assess the robustness of our findings, as detailed in Appendix C.

Computationally, we solve (P̃loc) using Python 3 and the Gurobi solver. The algorithm is configured

to halt execution once the optimality gap falls below 0.1%, or runtime reaches six hours. We report

the optimality gap between (P̃loc) and (Ploc) in Appendix B.3.

4.3. Results

We first present our findings from the vaccination demand estimation model. We then utilize

these estimates to predict demand at the optimal set of counterfactual locations, to illustrate the

potential advantages of broadening FRPP through alternative partnerships.

4.3.1. Demand Estimates. The estimated parameters for the demand model, presented in

Table 2, reveal key aspects of vaccine demand including variations linked to demographic factors.

While these estimates are highly suggestive, individual coefficients should be interpreted with some

caution due to the high correlation among many demographic variables.9 Notably, the Healthy

Places Index—a composite measure of health within a community—emerges as a strong predictor

of vaccination uptake, with the least healthiest areas having conditionally lower vaccination rates.

This finding suggests that the spatial inequalities observed in vaccination rates mirror those seen

in other dimensions of health. Additionally, other forms of inequality are evident, such as more

educated zip codes and those with higher employment rates exhibiting greater vaccine demand.

9 For example, households with employer-provided health insurance typically have lower unemployment and poverty
rates.
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Table 2 Structural demand estimates

Model Outcome:
Fraction Fully Vaccinated

Independent variable Coef. Std. error

HPI Quartile 4 (most healthy) Ref.
HPI Quartile 3 -0.304∗∗∗ (0.084)
HPI Quartile 2 -0.451∗∗∗ (0.112)
HPI Quartile 1 (least healthy) -0.605∗∗∗ (0.149)

Log-distance × HPI Quartile 4 -0.063 (0.070)
Log-distance × HPI Quartile 3 -0.142∗∗∗ (0.050)
Log-distance × HPI Quartile 2 -0.124∗∗∗ (0.043)
Log-distance × HPI Quartile 1 -0.161∗∗∗ (0.043)

Race White Ref.
Race Black -0.052 (0.342)
Race Asian 2.001∗∗∗ (0.179)
Race Hispanic 0.987∗∗∗ (0.167)
Race Other 7.077∗∗ (3.049)

Health Insurance: Employer -1.202∗ (0.696)
Health Insurance: Medicare 0.197 (0.739)
Health Insurance: Medicaid -0.973 (0.729)
Health Insurance: Other -2.319∗∗∗ (0.760)

College Graduation Rate 1.727∗∗∗ (0.282)
Unemployment Rate -1.777∗∗∗ (0.686)
Poverty Level -0.011 (0.472)

Log(Median Household Income) -0.110∗ (0.060)
Log(Median Home Value) 0.114∗∗ (0.050)
Log(Population Density) -0.078∗∗∗ (0.022)

Constant 1.813∗∗ (0.721)

Note. Estimates represent a demand model of the share of eligible individuals that are fully vaccinated for

COVID-19 as of March 1, 2022. The parameters are estimated via the procedure described in Section 3.1.2. Healthy

Places Index (HPI) is a composite measure of a community’s health and well-being. Log-distance refers to the

distance between the centroid of the individual’s Census block and the location of their modeled vaccination

appointment. Significance levels: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Given our study’s focus on optimizing healthcare facility locations, the key estimates for our

analysis are the distance sensitivities: (αh)h∈H for HPI quartiles H = {1,2,3,4}. The estimates

reveal a distinct, statistically significant, and economically meaningful pattern: αh is negative and

statistically significant for all HPI quartiles except the top one, whose coefficient is much smaller in

magnitude and not statistically distinguishable from zero. Importantly, these distance sensitivities

remain significant after controlling for observable Census demographics, including race/ethnicity,

health insurance coverage, college graduation rate, unemployment rate, poverty rate, and median

household income, among others. Therefore, the estimated sensitivity of vaccine demand to distance
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Figure 5 Predicted COVID-19 vaccination rates

Note. The figure plots the predicted vaccination rates under the estimated demand parameters at different distances

to the offered vaccination site. Within each HPI quartile, we compute the mean vaccination rate assuming that all

individuals are assigned to a location with the given distance.

cannot be solely explained by spatial variation in these demographics, and likely reflects a genuine

sensitivity to distance.

One important implication of these estimates is that residents of less healthy communities expe-

rience greater reductions in vaccination rates as the distance to their vaccination site increases. For

example, doubling the average distance from 1 km to 2 km results in a predicted 2.4 percentage-

point decrease in vaccination rates for residents in the bottom HPI quartile. In contrast, those

in the top HPI quartile experience a reduction of just 0.5 percentage points. These findings are

consistent with the observation that traveling longer distances for vaccination appointments is

most burdensome for individuals with lower socioeconomic status, who may lack access to trans-

portation, work flexibility, etc. Figure 5 illustrates the demand estimates by plotting predicted

vaccination rates at different travel distances, by HPI quartile. The sizeable gaps between curves

highlight both the inequality in vaccination uptake across HPI quartiles, regardless of distance, as

well as the considerably greater sensitivity of demand to distance for those in the bottom three

HPI quartiles.

The preceding evidence demonstrates a strong correlation between distance to a vaccination

site and vaccination uptake. One potential threat to this model specification is the possibility of

selection bias among pharmacies included in FRPP, which might arise if the selection process is

ex-ante correlated with both the propensity to get vaccinated and HPI—beyond what is captured

by observable demographics. However, this seems unlikely given that many participating locations

are part of national chains (e.g., CVS, Walgreens), which had established store locations well in



Bravo, Gandhi, Hu, and Long: Estimate-then-optimize in healthcare
24

advance of the COVID-19 vaccine gaining FDA approval. While retail pharmacies do tend to locate

in higher income, urban communities, including additional demographics helps to control for this.

Appendix C.1 shows that our demand estimates remain qualitatively similar under a range

of alternative specifications. These include alternative functional forms for distance, choice sets,

capacity constraints, and appointment allocations. In all cases, the estimates continue to reflect

significant inequality in vaccination by HPI, as well as distance sensitivities that are greater for

low-HPI individuals than high-HPI individuals.

4.3.2. Optimization. Under the Pharmacy-only policy, our model predicts an overall

COVID-19 vaccination rate of 71%, close to the observed rate of 70% in California. Predicted vac-

cination rates widely vary across HPI quartiles, with a 20 percentage-point difference between the

top and bottom HPI quartiles (Table 3), which broadly aligns with empirical rates (Figure 4). This

gap in predicted vaccination rates arises for two reasons. First, individuals in the top HPI quartile

tend to live closer to pharmacies participating in FRPP (Figure 1). Second, these residents are less

sensitive to long distances and are thus willing to travel farther to be vaccinated, as illustrated in

Figure 5.

Of the 26.4 million predicted vaccinations statewide, nearly three-quarters (19.5 million) are

obtained within walking distance of one’s home Census tract (i.e., within one mile or 1.6 km).

Nevertheless, residents of the lowest HPI quartile who receive a vaccination are less likely to obtain

it at a pharmacy within walking distance, compared to those in higher HPI communities.

We evaluate a network expansion policy that optimally selects A= {100, 200, . . . , 1000} dollar

stores from 1,016 possible locations in California. As expected, network expansion significantly

improves predicted vaccination rates. For instance, augmenting the existing set of 4,035 FRPP

pharmacies with 500 additional optimally selected dollar stores results in 0.77 million additional

vaccinations statewide. This represents a 2.9% increase over the Pharmacy-only benchmark, equat-

ing to a marginal gain of approximately 1,500 vaccinations per added dollar store.

Table 3 Predicted vaccinations under Pharmacy-only policy

Vaccinations in millions (% of population)

HPI quartile

All Bottom 25% 25-50% 50-75% Top 25%

Pharmacy-only

Total 26.44 5.62 6.68 6.83 7.31
(71%) (61%) (69%) (72%) (81%)

Walkable 19.46 3.98 5.07 4.96 5.45
(52%) (44%) (53%) (52%) (60%)

Note. Walkable distances are defined as travel distances less than one mile (1.6 km).
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Figure 6 Added vaccinations relative to Pharmacy-only, assuming 500 dollar stores are added statewide
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Notably, the benefits of adding dollar stores largely accrue to communities in the bottom HPI

quartile, who experience a 5.4% increase in vaccinations compared to a 2.5% increase in the top

quartile (Figure 6). A majority of the model-selected dollar stores fall within low HPI areas: 229

dollar stores open in tracts in the bottom HPI quartile. This boosts walkable vaccinations by 19%

in precisely the communities with lower automobile access and higher shares of workers commuting

by public transit, walking, or cycling (Public Health Alliance of Southern California 2022).

Maps depicting the geographic diversity of the existing FRPP pharmacies and selected dollar

stores in Los Angeles County are shown in Figure 7, where darker regions correspond to lower HPI

tracts. Fewer pharmacies are found in south Los Angeles, San Bernardino (east), and San Fernando

Valley (north), some of the more economically disadvantaged areas of the county (US Census

Bureau 2019). A network expansion policy of 500 additional dollar stores statewide optimally selects

98 dollar stores in LA County, with most found in lower HPI areas on the map. The tendency

of dollar stores to be located in disadvantaged areas positions them particularly well to enhance

vaccination rates in vulnerable communities. Although higher HPI communities may have many

available pharmacies nearby, adding dollar stores can offer modest gains to these populations too,

by allowing individuals across the HPI spectrum to receive a vaccination closer to home.

Beyond simply increasing capacity, incorporating partner stores as vaccine distribution points

provides further benefits—especially when the partnership locations are strategically chosen. Com-

pared to a näıve strategy that randomly selects A partner locations, our optimization-based

approach yields substantially more predicted vaccinations (Figure 8). For A= 500, the set of opti-

mally selected dollar stores generates more than 300,000 additional vaccinations versus a random

strategy. In other words, 40% of the predicted gains are attributable to choosing the best locations.
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Figure 7 Maps of FRPP pharmacies in Los Angeles County, and optimal locations of partner stores assuming

network expansion with A=500 locations statewide
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Pharmacies Dollar Stores
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Bottom 25% 25−50% 50−75% Top 25% Undefined

Note. Los Angeles County has 982 pharmacies participating in FRPP, 162 dollar stores, 788 Starbucks coffee

houses, and 307 high schools. Of these potential locations, a network expansion policy (A= 500 statewide) selects

98 dollar stores, 115 coffee houses, or 154 high schools within the county. Tracts with fewer than 1,500 residents or

where >50% of residents live in institutional settings (e.g., dormitories, nursing homes, prisons) are Undefined.

We also observe rapidly diminishing returns as the number of partner locations A increases.

With only 100 optimally selected dollar stores, nearly 540,000 added vaccinations statewide are

predicted, reflecting 70% of the gains if 500 dollar store locations are employed. With 200 dollar

stores, more than 700,000 added vaccinations are predicted—more than three times the vaccination

gains achieved by random selection—with over 260,000 vaccinations accruing to the bottom HPI

quartile (Figure 8). Efficiently selecting alternative vaccination locations could be particularly

valuable during the initial phases of expansion or in resource-constrained settings.

4.3.3. Scenario Analysis. We test the robustness of our numerical results to changes in

model parameters, key assumptions, and distance specifications. Additionally, we present an alter-
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Figure 8 Added vaccinations relative to Pharmacy-only, assuming network expansion with A={100, . . . , 1000}

dollar stores statewide
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Note. Random strategy is reported as the average added vaccinations over the Pharmacy-only strategy; we

computed the average over multiple random selections of 500-dollar stores.

native scheme that modifies the budget constraint, holding constant the total number of vaccination

locations in operation to current FRPP levels. We refer to this as network replacement.

Parameter sensitivity. We consider, as a reference scenario, the network expansion scheme

with A= 500 dollar stores statewide, and we vary the choice set size M , per-store capacity K, and

travel distance function with threshold d̄. All modifications are consistently applied across both

the estimation and optimization stages. Results are provided in Appendix C.2.

Our modeling results remain qualitatively similar to our earlier findings. Dollar stores are espe-

cially beneficial if residents have few vaccination options (i.e., small M), face limited vaccine supply

(i.e., small K), or have greater sensitivity to long travel distances (i.e., indifference to distances

below d̄). An alternative distance function predicts larger vaccination gains for communities most

distant from existing pharmacies. Overall, our findings are consistent across these settings, with

dollar stores offering considerable benefits for lower HPI areas or those living in pharmacy deserts.

Alternative partnerships. We examine partnering with high schools or Starbucks coffee

houses, instead of the previously considered dollar stores. We assume a similar network expansion

with A= 500 selected locations statewide. Detailed results are provided in Appendix C.3.

High schools are distributed proportionally to local population levels, as they serve students

from diverse socioeconomic backgrounds (Figure A1), making them suitable candidate locations

for delivering vaccinations. Expanding the network to include high schools significantly increases

predicted vaccinations within the bottom HPI quartile by providing more access points in under-
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served communities. Figure 7 illustrates how high schools, similar to dollar stores, can effectively

complement existing FRPP pharmacies as evidenced by the selection of schools in lower HPI areas.

Conversely, California has nearly three times as many Starbucks locations as dollar stores or high

schools, with these coffee houses typically situated in more affluent, high-traffic areas (Figure A1).

Expanding the vaccination network to include 500 Starbucks locations statewide (Figure 7) would

primarily enhance vaccination rates in the top HPI quartile (see Figure C2).

Network replacement. In the network replacement scenario, the optimal mix of FRPP phar-

macies and dollar stores is selected, effectively reallocating vaccination capacity from pharmacies

to partner locations. Specifically, replacing 15% (626 out of 4,035) of existing pharmacies with

dollar stores generates an additional 0.70 million predicted vaccinations, a 2.6% increase over the

Pharmacy-only strategy. This reallocation involves removing pharmacy-based vaccination sites in

neighborhoods with excess capacity and establishing new sites in underserved communities (Fig-

ure C4). Predicted vaccinations in the bottom HPI quartile increase by nearly 5%, thereby nar-

rowing the gap between the highest and lowest HPI quartiles. This strategy yields more than 1.1

million additional vaccinations within walking distance (i.e., less than one mile), including 650,000

vaccinations in the most vulnerable regions (Figure C3). This test case is particularly relevant to

the design of a partnership program under budgetary or service capacity constraints.

4.4. Policy Insights

Our case study underscores the value of integrating structural estimation and optimization method-

ologies for policy design in revealing and alleviating disparities in healthcare access. Using only

aggregated outcome data, we are able to effectively estimate the link between proximity to a vac-

cination site and uptake, showing that longer distances indeed result in lower vaccination rates.

Importantly, distance does not equally affect all socioeconomic groups, suggesting that an effective

vaccination campaign should consider travel distance sensitivity in selecting dispensing locations.

More vulnerable neighborhoods should be prioritized and approached differently to achieve similar

outcomes. For example, a priority scheduling system that reserves vaccination slots at locations

near low HPI communities could help ensure that these underserved population can obtain a vac-

cination, given their greater sensitivity to travel distance.

We propose a complementary strategy to FRPP: forging partnerships with public sector or pri-

vate businesses to expand the program and offer vaccinations at optimally selected sites. Beyond

merely expanding vaccination capacity, a strategic partnership brings this capacity closer to the

very populations least likely to seek vaccination when faced with longer distances. Offering vac-

cinations at just 100 optimally chosen dollar stores across California could theoretically boost

vaccinations by more than half a million, or 2% of the predicted total. With 6% of California’s pop-

ulation currently living in a pharmacy desert (Wittenauer et al. 2024), even this modest increase
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could reduce vaccination disparities. Several studies have found minimal effects of targeted inter-

ventions on increasing vaccination coverage. For instance, one randomized controlled trial of vaccine

education and messaging found that a host of interventions have no statistically significant effect

on the vaccination rates of nursing home staff (Berry et al. 2022). Even interventions celebrated

for their success in increasing short-run vaccination rates, such as nudges (Dai et al. 2021) and

persuasive advertising (Larsen et al. 2023), typically achieve low single-digit effects.

The feasibility and costs of implementing a non-pharmacy-based vaccination campaign are criti-

cal factors that must be carefully considered. Starbucks locations, for example, are visited regularly

and may offer more frequent opportunities for vaccination, but their smaller physical space may

lead to operational constraints and privacy concerns. High schools, on the other hand, have ample

indoor space but school districts are decentralized leading to organizational challenges. Evidence

that dollar stores could make a compelling partnership for vaccination administration is demon-

strated by their prior use for these services. Beginning in mid-2021, local health departments and

jurisdictions across the U.S. collaborated with Dollar General to offer pop-up COVID-19 vaccina-

tion clinics (see Appendix Table A3 for a non-exhaustive list). These partnerships were ad-hoc and

lacked any coordination at the state or national level. In contrast, our proposed framework proffers

a more strategic view of existing vaccination shortages and identifies one efficient mechanism to

re-balance supply and demand.

Administering vaccinations in a non-healthcare setting could pose staffing challenges. Some dollar

store chains are currently expanding into the pharmacy business themselves (Katje 2021), and

they could employ their own pharmacy services team on-site. Another operational strategy could

involve using a rotating schedule of visiting nurses or other temporary healthcare staff who travel

between sites. Similar programs have been implemented in several counties using the staffing agency

SnapNurse.10 We can approximate the associated staffing costs of a partnership strategy. The

average hourly wage of SnapNurse workers in California is $30 (ZipRecruiter 2023). Suppose a

vaccination campaign lasts three months, with one or two nurses assigned to each site for one 8-hour

day per week. The staffing cost per location would amount to approximately $2,900 (with one nurse)

to $5,800 (with two nurses) over the campaign duration. Partnering with 500 optimally selected

dollar stores would therefore cost between $1.4 million and $2.9 million, garnering a predicted 0.77

million additional vaccinations, at a cost of about $2 to $4 per added vaccination. These additional

vaccinations hold significant social value given the enormous protective effects for both vaccinated

individuals and others in their community, particularly those with a low HPI index.

10 SnapNurse launched in 2017 and deployed more than 10,000 nurses to over 1,000 healthcare facilities in 2020,
increasing their revenue by more than $85 million from $3 million in 2019 (Barber 2021).
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Despite these operational challenges, our analysis underscores the effectiveness of tailored loca-

tion strategies that consider the distinct needs and circumstances of different community segments.

This approach not only enhances public health outreach but also provides policymakers with

evidence-based insights for selecting appropriate partners, both private and public, to systemat-

ically tackle structural inequalities inherent in existing health programs like the Federal Retail

Pharmacy Program. While our case study is based on cross-sectional data for California due to

limited data availability, our framework could be applied at any point in a vaccination campaign,

potentially leading to a more proactive policy that mitigates disparities from the beginning.

5. Conclusions

Expanding access to essential services is crucial for eliminating socioeconomic disparities in health,

yet few studies have rigorously quantified its impact on health outcomes or explored policy inter-

ventions through prescriptive analytics. The inherent complexity of healthcare needs, including

patient heterogeneity and limited data availability, pose significant challenges to implementing a

one-size-fits-all approach. This study introduces a data-driven framework that integrates a struc-

tural econometric model with a facility location model, offering a novel interdisciplinary perspective

on the critical issue of health inequality.

We conclude our paper by suggesting several avenues for future research. Investigating disparities

and distance elasticities across various domains, both within and beyond healthcare, offers fertile

ground for empirical and analytical research in the operations management community. Future

work could extend the prescriptive aspect of our framework by incorporating complex assumptions

(e.g., heterogeneous facilities), specifying alternative objectives (e.g., cost, equity), exploring other

solutions (e.g., facility consolidation, mobile delivery), or considering context-specific constraints,

while also developing scalable and efficient solutions for the resulting problem. Additionally, lever-

aging observational data in diverse formats to improve operational decision-making remains an

understudied area. Our study highlights the value of combining empirical models with prescrip-

tive analytics, underscoring their potential to inform and refine policy-making and operational

strategies.
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Appendix A: Case Study Data

Table A1 California summary statistics

Mean SD

Number of retail pharmacy vaccination sites 4,035 -
Number of dollar stores 1,016 -
State population 37,336,716 -
Number of zip-codes 1,751 -
Population (per zip-code) 22,265 22,608
Population density (residents per sq mi) 3,425 5,574
Race/ethnicity
% White 0.51 0.28
% Black 0.04 0.07
% Asian 0.09 0.13
% Hispanic 0.30 0.25
% Other 0.05 0.07

Health insurance
% Employer 0.41 0.17
% Medicare 0.15 0.11
% Medicaid 0.20 0.15
% Other 0.15 0.09

College graduation rate 0.31 0.21
Unemployment rate 0.07 0.06
Poverty level 0.10 0.11
Median household income ($000s) 70.2 40.1
Median home value ($000s) 501.1 398.3
HPI (continuous value in [0,1]) 0.47 0.29
Distance to nearest vaccination site (km)
HPI quartile 4 (most healthy) 3.8 5.7
HPI quartile 3 8.1 13.3
HPI quartile 2 12.0 13.5
HPI quartile 1 (least healthy) 15.3 16.2

Note. Zip code-level demographics include race/ethnicity, health insurance, college graduation rate, unemployment

rate, poverty rate, median household income, median home value, population density, and population.

Table A2 Partnership categories in California

Category Brand Locations Source

Pharmacy CVS 1,092 vaccines.gov
Walgreens 587
Rite Aid 538
Walmart 296
Safeway 161
Costco 124
Vons 109
Sav-On 91
Ralphs 75
Other 962

Coffee House Starbucks 3,172 Safegraph

Dollar Store Dollar Tree 631 ScrapeHero
Dollar General 238
Family Dollar 147

High School Public 1,225 CA Dept of Education

https://www.vaccines.gov/
https://www.cde.ca.gov/ds/si/ds/pubschls.asp
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Table A3 Past COVID-19 vaccination or testing campaigns at Dollar General stores

Month Locations Services offered Source

Aug 2021 9 counties in Michigan COVID-19 vaccination Hall (2021)
by SnapNurse

Aug 2021 3 stores in Virginia COVID-19 testing Virginia Department of Health (2021)

Aug 2021 Sumter County, South Carolina COVID-19 vaccination Staff Reports (2021b)

Aug 2021 Jackson County, Indiana COVID-19 vaccination Banks (2021)

Sep 2021 6 counties in Kansas COVID-19 vaccination Kansas Office of the Governor (2021)
with $100 incentive

Oct 2021 4 stores in Toledo, Ohio COVID-19 vaccination WTVG News (2021)
by RiteAid pharmacists

Feb 2022 Shenandoah County, Virginia COVID-19 vaccination WHSV Newsroom (2022)

Feb 2022 Fairfax County, Virginia COVID-19 vaccination Staff Reports (2021a)

Feb 2022 3 counties in Virginia COVID-19 vaccination WFXR Fox (2022)

Mar 2022 Roanoke County, Virginia COVID-19 vaccination Cover Virginia (2022)

Jun 2022 San Joaquin County, California COVID-19 vaccination Health Plan of San Joaquin (2022)

Figure A1 Retail store types in California, by Healthy Places Index (HPI)
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Appendix B: Implementation

B.1. Optimizing the GMM objective function

Optimizing the GMM objective given in equation (6) is particularly challenging because the distance param-

eters α affect both the individuals’ appointment location choice and their vaccination preferences. However,

standard solvers can easily compute optimal demand parameters given a fixed appointment distribution

f(ℓi | si). We propose an iterative approach for optimizing the GMM objective that consists of iterating

between computing the optimal demand parameter values under a fixed appointment distribution and updat-

ing the appointment distribution based on the current parameter values. By iterating in this fashion, we

eventually converge to demand parameter estimates—including the distance sensitivities α—that (locally)

minimize the GMM objective given the appointment distribution that α implies.

We denote f̃ (k)(ℓi | si) as the distribution of appointment locations in step k of the algorithm. In the initial

step, we assume that locations have no capacity constraints, and that all individuals prefer their closest

location.11 Then, assuming this appointment distribution is fixed, we optimize the GMM objective function

to obtain a new set of optimal parameters θ̂
(k)

, including new values for the distance sensitivities α̂(k).

Given a fixed appointment distribution f̃ (k)(ℓi | si), we obtain θ̂
(k)

using the fixed-point approach outlined

by Berry et al. (1995) that optimizes the following GMM objective:

θ̂
(k)

= argmin
θ

(
1

|A|
∑
a

Z̃(k)
a (θ)ξ̃(k)a (θ)

)′

Φ

(
1

|A|
∑
a

Z̃(k)
a (θ)ξ̃(k)a (θ)

)
. (B.1)

Note that the instruments Z̃(k)
a (θ) are computed assuming the fixed appointment distribution f̃ (k) (ℓi | si).

The term ξ̃(k)a (θ) is obtained by matching the implied aggregate demand ρ̃(k)a (θ) to the observed rates ρobs
a .

Formally, the implied aggregate demand in area a is:

ρ̃(k)a (θ) =
∑
si∈a

[ ∑
ℓi∈Li

exp (d(si, ℓi)αa +Xaβ+ ξa)

1+ exp(d(si, ℓi)αa +Xaβ+ ξa)
f̃ (k) (ℓi | si)

]
f(si | a). (B.2)

We implement the BLP approach using the popular PyBLP package (Conlon and Gortmaker 2020). The

output is θ̂
(k)

, which includes the distance sensitivities α̂(k). These values are then used to update the

appointment distribution in the next iteration according to equation (7) as follows:

f̃ (k+1)(ℓi | si,Li) =
exp

(
d(si, ℓi)α̂

(k)
ai

)∑
ℓ∈Li

exp
(
d(si, ℓ)α̂

(k)
ai

) , (B.3)

where the distribution of Li is determined by the sequential assignment process described in Section 3.1.3.

To determine convergence, we compute for each area the Wasserstein distance between the appointment

location distributions in the current step and the previous step. We terminate the algorithm when the Wasser-

stein distance falls below a certain tolerance, that is, when f̃ (k+1)(ℓi | si) ≈ f̃ (k)(ℓi | si). At this point, our

approach of iteratively updating appointment distributions and preferences converges to a θ̂ that approxi-

mately satisfies the local optimality conditions for equation (6).12

11 This is equivalent to having extreme distance sensitivities, i.e., α→−∞.

12 Note that all the fixed-point methods used are evaluated using multiple starting points.
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B.2. Demand aggregation

For computational tractability, we formulate the case study optimization problem at the Census tract level.

Solving this problem requires having tract-level utility values ū(t, ℓ), which determine the tract-level demand

shares ρtℓ. However, these utility terms cannot be computed using the demand model parameters as these

were estimated at the Census block level. Instead, we define û(t, ℓ) the utility-equivalent individuals in Census

tract t obtain from receiving service at location ℓ∈L, and define the tract-level demand share as:

ρtℓ :=

exp(2û(t,ℓ))

1+exp(û(t,ℓ))∑
k∈Lt

exp(û(t, k))
, ∀ℓ∈Lt, (B.4)

and zero otherwise, where Lt is the tract-specific choice set. We solve for these utility-equivalent values by

solving a system of equations based on the estimated block-level demand shares ρbℓ (i.e., as a function of the

block-level estimated utilities ū(b, ℓ)) and the tract-level demand shares ρtℓ({û(t, ℓ)}t,ℓ) in equation (B.4).

The system of equations is derived from writing the tract-level demand shares as an aggregation of the

block-level demand shares.

Let mb and mt be the eligible population of a Census block b and a Census tract t, respectively. Since

blocks are perfectly nested within tracts (i.e., each block belongs to one unique tract), we have mt =
∑

b∈t
mb.

The aggregate share of the population in tract t that obtains service at a specific location ℓ is given by the

population-weighted share of all blocks b within the tract t:

ρtℓ =
∑
b∈t

mb

mt

ρbℓ, if ℓ∈Lt (B.5)

The value of ρbℓ is obtained following equation (9) with subareas defined as blocks, namely,

ρbℓ :=

exp(2ū(b,ℓ))

1+exp(ū(b,ℓ))∑
ℓ∈Lb

exp(ū(b, ℓ))
, if ℓ∈Lb, (B.6)

and zero otherwise, where Lb is the block-specific choice set. Then, we solve for {û(t, ℓ)}t,ℓ by plugging in

the definition of ρtℓ in equation (B.4) into equation (B.5).

This system of non-linear equations is hard to solve, instead we provide a simple numerical approximation:

we solve for û(t, ℓ) assuming ℓ is the only location available to tract t and to all blocks b∈ t with ℓ∈Lb. We

then iteratively solve for each ℓ in Lt. This reduces the above system of equations to

ρtℓ :=
exp(û(t, ℓ))

1+ exp(û(t, ℓ))
, if ℓ∈Lt and zero otherwise; (B.7a)

ρtℓ =
∑
b∈t

mb

mt

ρbℓ =
∑
b∈t

mb

mt

exp(ū(b, ℓ))

1+ exp(ū(b, ℓ))
, if ℓ∈Lt and zero otherwise. (B.7b)

Let us denote the solution to equations (B.7a)-(B.7b) as {ũ(t, ℓ)}t,ℓ, and the corresponding induced tract-level

demand shares as {ρ̃tℓ}t,ℓ (following the definition in equation B.4).

While we cannot compare {ũ(t, ℓ)}t,ℓ with {û(t, ℓ)}t,ℓ directly to assess the validity of our approximation

(as the latter may not exist), we could compare (i) the induced demand shares, i.e., the demand share

implied by our approximation, ρ̃tℓ and (ii) the tract-level demand share implied by aggregating the actual

block-level demand share, ρtℓ from equations (B.5)-(B.6), both assuming |Lt|= 5. We report the relative gap

∆ := |ρ̃tℓ − ρtℓ|/ρtℓ across all tracts and candidate locations analyzed in our case study. The mean of ∆ is

0.1%, with a maximum of 2%. This demonstrates the validity of our approximation. Notice that this is only

done for the optimization stage to identify the optimal set of locations, then in the evaluation, we employ

block-level demand estimates to determine the predicted vaccinations, requiring no approximation.
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B.3. Optimality Gap of the MIP Relaxation

Under the equivalent formulation (P
′

loc) of our original optimization problem, let g(x,y, b, v,w) denote the

objective function where x,y, b, v,w are the decision variables, and R is the feasible region. Let the optimal

solution to (P
′

loc) be (x∗, y∗, b∗, v∗,w∗), such that

g(x,y, b, v,w)≤ g(x∗, y∗, b∗, v∗,w∗), ∀ (x,y, b, v,w)∈R.

Similarly, denote the optimal solution of the relaxation (P̃loc) as (x̃, ỹ, b̃, ṽ, w̃, z̃), with optimal objective

value g̃(x̃, ỹ, b̃, ṽ, w̃, z̃) and feasible region R̃. Notice that for any feasible solution (x,y, b, v,w) ∈ R of

the original problem (P
′

loc), we can always construct a feasible solution for the relaxation (P̃loc) by letting

z = vw, i.e., (x,y, b, v,w, vw)∈ R̃. Then, we have

g(x∗, y∗, b∗, v∗,w∗) = g̃(x∗, y∗, b∗, v∗,w∗, v∗w∗)

≤ g̃(x̃, ỹ, b̃, ṽ, w̃, z̃), (B.8)

where the first equality follows from the following observation:

g(x,y, b, v,w) =
∑
s∈S

∑
ℓ∈L

ms

exp(2ū(s, ℓ))

1+ exp(ū(s, ℓ))
wsℓysℓ = g̃(x,y, b, v,w, vw),

and the second inequality follows from the definition of optimality for (P̃loc).

To derive a lower bound on the optimal objective value of the original problem (P
′

loc), we substitute the

optimal set of locations x̃ obtained from (P̃loc) back into (P
′

loc). In other words, we fix the set of locations

x = x̃ in (P
′

loc) and solve for the optimal values of other decision variables, and we denote the resulting

optimal solution as (x̃, y′, b′, v′,w′), where

g(x̃, y′, b′, v′,w′)≤ g(x∗, y∗, b∗, v∗,w∗). (B.9)

Combining equations (B.8) and equation (B.9), we conclude the following relation holds:

g(x̃, y′, b′, v′,w′)≤ g(x∗, y∗, b∗, v∗,w∗)≤ g̃(x̃, ỹ, b̃, ṽ, w̃, z̃).

Then we can obtain a bound on the optimality gap of our relaxation as follows:

Gopt :=
g(x∗, y∗, b∗, v∗,w∗)− g(x̃, y′, b′, v′,w′)

g(x∗, y∗, b∗, v∗,w∗)

≤ g̃(x̃, ỹ, b̃, ṽ, w̃, z̃)− g(x̃, y′, b′, v′,w′)

g(x∗, y∗, b∗, v∗,w∗)

≤ g̃(x̃, ỹ, b̃, ṽ, w̃, z̃)− g(x̃, y′, b′, v′,w′)

g(x̃, y′, b′, v′,w′)
:=Gopt

In our case study’s main results from Section 4.3.2, we obtain an optimality gap upper bound of 0.58%.

Across all instances analyzed in Section C, the mean of Gopt is 0.58% (median = 0.60%) with a maximum of

0.81%. These results validate the strength of our relaxation. It’s important to note that the optimality gap

discussed here pertains to the relaxation of our optimization problem, not to the potential benefits of the

selected locations.
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Appendix C: Scenario Analysis

We test the robustness of both our estimation and optimization results to changes in model parameters and

assumptions. In Section C.1, we provide the demand estimates under varying parameter values, distance

functions, and the appointment assignment process. We then present our optimization model’s results for

select parameter values and alternative distance functions in Section C.2. We evaluate the potential gains

of broadening FRPP by partnering with high schools or Starbucks coffee houses instead of dollar stores

in Section C.3. Finally, in Section C.4, we examine an alternative network replacement strategy, where a

combination of FRPP and dollar stores are jointly selected while holding constant the total number of

vaccination distribution points.

C.1. Demand Estimates

In general, our estimated sensitivities to distance obtained from the structural demand estimation step are

robust to assumptions in parameter values and our assumed appointment assignment process. Tables C4 and

C5 give the demand estimation results for all variations considered.

Choice set. In our primary analysis, we assume that if all locations in an individual’s choice set are at

capacity, then individuals are assigned to their M th location. This approximation is necessary because the

observed vaccination rates in some zip codes are higher than the aggregate vaccination capacity available

for those residents. In other words, lower values of M may not guarantee that all vaccinated individuals can

obtain a vaccination within one of their M closest locations, which would result in non-convergence of the

BLP methodology. If M = 5, then approximately 3.6% of individuals encounter no remaining capacity at all

5 locations, and are thus assigned to their 5th closest location.

As a robustness check, we relax the assumption thatM = 5 and we estimate demand under the MNL choice

model with M ∈ {10, 300, 1,000}. The first four columns of Table C4 confirm that the demand estimates

are not sensitive to the number of locations in the choice set. For instance, if M = 10, the distance sensitivity

coefficient for HPI quartile 1 slightly attenuates to −0.158 (p < 0.001) compared to −0.161 (p < 0.001) when

M = 5. Even when M = 1,000, which virtually guarantees that all individuals have some location in their

choice set with remaining capacity, the sensitivity to distance for HPI quartile 1 only modestly changes to

−0.180 (p < 0.001). Note, that the magnitude is greater because, under this assumption, some individuals will

end up choosing a very distant vaccination site and the lower distance coefficient will nudge them to choose

closer sites (under the MNL choice model), so as to match predicted demand with observed vaccination

rates.

Capacity. Next, we consider varying the vaccination site capacity K ∈ {8,000, 12,000}, from our baseline

assumption ofK = 10,000. Similar toM , these adjustments affect the probability that an individual chooses a

nearby vaccination site. For instance, with a reduced capacity per-site of K = 8,000, individuals may need to

consider farther sites if their closest options reach capacity. Indeed, under limited capacity, demand estimates

indicate that individuals are less sensitive to distance, suggesting a greater willingness to travel farther

for vaccination (Table C5). The estimated coefficient on distance for HPI quartile 1 is −0.150 (p < 0.001)

compared to −0.161 (p < 0.001) when K = 10,000. Conversely, with an increased capacity of K = 12,000,
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individuals are more likely to secure a spot at their nearest site, aligning with their first preference under

the MNL model. Under this scenario, the estimated coefficient on distance for HPI quartile 1 is −0.170

(p < 0.001), implying a slightly steeper disutility to traveling farther for vaccination.

Distance forms. We consider an alternative specification for the distance function d(s, ℓ) in which individ-

uals’ disutility of traveling is assumed to be zero for distances below a threshold d̄. In other words, individuals

are insensitive to variations in short distances. The functional form is:

d(s, ℓ) = log
(
(dsℓ − d̄)+ +1

)
(C.10)

where dsℓ is the geodesic distance between s and ℓ, and x+ :=max{x,0}.

We consider two distance thresholds, d̄∈ {0.5,1.0} miles, and recalculate demand estimates. In both cases,

the distance sensitivities increase slightly, to offset the flat utility values below d̄ (Table C5). For instance,

if d̄= 1.0, the coefficient on distance for HPI quartile 1 is −0.174 (p < 0.001), as individuals become more

sensitive to longer distances above d̄. However, the signs and relative magnitudes of distance sensitivities

remain unchanged.

Closest location. Finally, we test an alternative appointment process in lieu of the MNL-based choice

model. Here, we assign individuals to their closest location with available capacity, out of the M nearest

locations, and we vary M ∈ {300, 1,000}. The last two columns of Table C4 give the revised demand

estimates. Distance sensitivity coefficients attenuate slightly as M increases, as expected. For instance, under

this assignment regime with M = 300, the coefficient on distance for HPI quartile 1 is −0.130 (p < 0.001).

Our general findings hold, confirming that distance to a pharmacy negatively correlates with vaccination

rates and that individuals from lower HPI quartiles exhibit greater sensitivity to travel distances.
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Table C4 Demand estimates under varying sizes of choice sets M and appointment assignment process

MNL Closest Location

Independent Variable M = 5 (†) M = 10 M = 300 M = 1000 M = 300 M = 1000

HPI Quartile 4 (most healthy) Ref. Ref. Ref. Ref. Ref. Ref.

HPI Quartile 3 -0.304∗∗∗ -0.306∗∗∗ -0.303∗∗∗ -0.306∗∗∗ -0.299∗∗∗ -0.299∗∗∗

(0.084) (0.084) (0.086) (0.083) (0.087) (0.087)
HPI Quartile 2 -0.451∗∗∗ -0.452∗∗∗ -0.448∗∗∗ -0.447∗∗∗ -0.450∗∗∗ -0.450∗∗∗

(0.112) (0.112) (0.113) (0.111) (0.114) (0.114)
HPI Quartile 1 (least healthy) -0.605∗∗∗ -0.607∗∗∗ -0.600∗∗∗ -0.603∗∗∗ -0.601∗∗∗ -0.601∗∗∗

(0.149) (0.150) (0.150) (0.148) (0.152) (0.152)

Log-distance × HPI Quartile 4 -0.063 -0.062 -0.051 -0.086 -0.027 -0.027
(0.070) (0.070) (0.072) (0.071) (0.068) (0.068)

Log-distance × HPI Quartile 3 -0.142∗∗∗ -0.138∗∗∗ -0.134∗∗∗ -0.160∗∗∗ -0.108∗∗ -0.108∗∗

(0.050) (0.050) (0.050) (0.050) (0.049) (0.049)
Log-distance × HPI Quartile 2 -0.124∗∗∗ -0.122∗∗∗ -0.119∗∗∗ -0.145∗∗∗ -0.092∗∗ -0.092∗∗

(0.043) (0.043) (0.043) (0.045) (0.042) (0.042)
Log-distance × HPI Quartile 1 -0.161∗∗∗ -0.158∗∗∗ -0.157∗∗∗ -0.180∗∗∗ -0.130∗∗∗ -0.130∗∗∗

(0.043) (0.043) (0.043) (0.044) (0.043) (0.043)

Race White Ref. Ref. Ref. Ref. Ref. Ref.

Race Black -0.052 -0.049 -0.063 -0.104 0.007 0.007
(0.342) (0.343) (0.344) (0.342) (0.345) (0.345)

Race Asian 2.001∗∗∗ 2.004∗∗∗ 2.027∗∗∗ 1.968∗∗∗ 2.041∗∗∗ 2.041∗∗∗

(0.179) (0.179) (0.180) (0.178) (0.183) (0.183)
Race Hispanic 0.987∗∗∗ 0.989∗∗∗ 0.981∗∗∗ 0.971∗∗∗ 1.016∗∗∗ 1.016∗∗∗

(0.167) (0.167) (0.167) (0.167) (0.166) (0.166)
Race Other 7.077∗∗ 7.096∗∗ 7.258∗∗ 7.028∗∗ 7.217∗∗ 7.217∗∗

(3.049) (3.051) (3.088) (3.052) (3.054) (3.054)

Health Insurance: Employer -1.202∗ -1.201∗ -1.195∗ -1.209∗ -1.190∗ -1.190∗

(0.696) (0.697) (0.696) (0.695) (0.700) (0.700)
Health Insurance: Medicare 0.197 0.197 0.197 0.204 0.181 0.181

(0.739) (0.739) (0.739) (0.737) (0.743) (0.743)
Health Insurance: Medicaid -0.973 -0.975 -0.967 -0.972 -0.977 -0.977

(0.729) (0.730) (0.730) (0.728) (0.733) (0.733)
Health Insurance: Other -2.319∗∗∗ -2.319∗∗∗ -2.321∗∗∗ -2.316∗∗∗ -2.323∗∗∗ -2.323∗∗∗

(0.760) (0.760) (0.761) (0.758) (0.765) (0.765)

College Graduation Rate 1.727∗∗∗ 1.726∗∗∗ 1.737∗∗∗ 1.729∗∗∗ 1.732∗∗∗ 1.732∗∗∗

(0.282) (0.282) (0.282) (0.281) (0.283) (0.283)
Unemployment Rate -1.777∗∗∗ -1.779∗∗∗ -1.783∗∗∗ -1.748∗∗ -1.818∗∗∗ -1.818∗∗∗

(0.686) (0.686) (0.686) (0.684) (0.689) (0.689)
Poverty Level -0.011 -0.011 -0.014 -0.017 -0.013 -0.013

(0.472) (0.472) (0.472) (0.473) (0.474) (0.474)

Log(Median Household Income) -0.110∗ -0.110∗ -0.111∗ -0.108∗ -0.114∗ -0.114∗

(0.060) (0.060) (0.060) (0.060) (0.060) (0.060)
Log(Median Home Value) 0.114∗∗ 0.115∗∗ 0.114∗∗ 0.113∗∗ 0.117∗∗ 0.117∗∗

(0.050) (0.050) (0.050) (0.050) (0.050) (0.050)
Log(Population Density) -0.078∗∗∗ -0.077∗∗∗ -0.076∗∗∗ -0.085∗∗∗ -0.066∗∗∗ -0.066∗∗∗

(0.022) (0.022) (0.022) (0.022) (0.022) (0.022)

Note. (†) denotes our main specification. M refers to the size of an individual’s choice set. MNL estimates are under

the multinomial-logit choice model. Closest Location refers to an alternative assignment process where individuals

obtain a vaccination at their nearest pharmacy within M . Standard errors are in parentheses. Significance levels:

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Table C5 Demand estimates under varying per-store vaccination capacity and distance forms

Capacity Distance form

Independent Variable K = 10,000 (†) K = 8,000 K = 12,000 d̄= 0.5 d̄= 1

HPI Quartile 4 (most healthy) Ref. Ref. Ref. Ref. Ref.

HPI Quartile 3 -0.304∗∗∗ -0.299∗∗∗ -0.306∗∗∗ -0.262∗∗ -0.280∗∗∗

(0.084) (0.086) (0.084) (0.108) (0.097)
HPI Quartile 2 -0.451∗∗∗ -0.448∗∗∗ -0.451∗∗∗ -0.416∗∗∗ -0.424∗∗∗

(0.112) (0.113) (0.111) (0.132) (0.123)
HPI Quartile 1 (least healthy) -0.605∗∗∗ -0.597∗∗∗ -0.607∗∗∗ -0.553∗∗∗ -0.569∗∗∗

(0.149) (0.151) (0.149) (0.171) (0.162)

Log-distance × HPI Quartile 4 -0.063 -0.045 -0.076 -0.087 -0.074
(0.070) (0.070) (0.070) (0.091) (0.086)

Log-distance × HPI Quartile 3 -0.142∗∗∗ -0.128∗∗ -0.152∗∗∗ -0.170∗∗∗ -0.152∗∗∗

(0.050) (0.050) (0.050) (0.060) (0.056)
Log-distance × HPI Quartile 2 -0.124∗∗∗ -0.111∗∗ -0.135∗∗∗ -0.149∗∗∗ -0.136∗∗∗

(0.043) (0.043) (0.044) (0.052) (0.048)
Log-distance × HPI Quartile 1 -0.161∗∗∗ -0.150∗∗∗ -0.170∗∗∗ -0.190∗∗∗ -0.174∗∗∗

(0.043) (0.044) (0.044) (0.051) (0.048)

Race White Ref. Ref. Ref. Ref. Ref.

Race Black -0.052 -0.027 -0.074 -0.053 -0.065
(0.342) (0.343) (0.342) (0.343) (0.342)

Race Asian 2.001∗∗∗ 2.021∗∗∗ 1.983∗∗∗ 2.020∗∗∗ 2.027∗∗∗

(0.179) (0.180) (0.178) (0.179) (0.179)
Race Hispanic 0.987∗∗∗ 0.998∗∗∗ 0.980∗∗∗ 0.983∗∗∗ 0.982∗∗∗

(0.167) (0.166) (0.167) (0.166) (0.167)
Race Other 7.077∗∗ 7.136∗∗ 7.036∗∗ 7.385∗∗ 7.415∗∗

(3.049) (3.045) (3.049) (3.104) (3.118)

Health Insurance: Employer -1.202∗ -1.195∗ -1.207∗ -1.258∗ -1.262∗

(0.696) (0.697) (0.695) (0.694) (0.696)
Health Insurance: Medicare 0.197 0.189 0.200 0.151 0.144

(0.739) (0.740) (0.738) (0.734) (0.736)
Health Insurance: Medicaid -0.973 -0.976 -0.973 -1.026 -1.032

(0.729) (0.730) (0.728) (0.725) (0.726)
Health Insurance: Other -2.319∗∗∗ -2.322∗∗∗ -2.318∗∗∗ -2.372∗∗∗ -2.374∗∗∗

(0.760) (0.762) (0.759) (0.757) (0.759)

College Graduation Rate 1.727∗∗∗ 1.730∗∗∗ 1.727∗∗∗ 1.748∗∗∗ 1.754∗∗∗

(0.282) (0.283) (0.282) (0.282) (0.282)
Unemployment Rate -1.777∗∗∗ -1.796∗∗∗ -1.763∗∗ -1.787∗∗∗ -1.792∗∗∗

(0.686) (0.687) (0.685) (0.686) (0.686)
Poverty Level -0.011 -0.011 -0.012 -0.005 -0.002

(0.472) (0.473) (0.471) (0.475) (0.476)

Log(Median Household Income) -0.110∗ -0.112∗ -0.109∗ -0.113∗ -0.114∗

(0.060) (0.060) (0.060) (0.060) (0.060)
Log(Median Home Value) 0.114∗∗ 0.115∗∗ 0.114∗∗ 0.115∗∗ 0.116∗∗

(0.050) (0.050) (0.050) (0.050) (0.050)
Log(Population Density) -0.078∗∗∗ -0.073∗∗∗ -0.082∗∗∗ -0.078∗∗∗ -0.076∗∗∗

(0.022) (0.022) (0.022) (0.021) (0.021)

Note. (†) denotes our main specification. K refers to the vaccination capacity per location. Distance form refers to

an alternative travel cost function where individuals are indifferent to distances below d̄. Standard errors are in

parentheses. Significance levels: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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C.2. Optimization Results

We further test the robustness of our optimal facility location results by varying the values of parameters M ,

K, and distance forms consistently across both the estimation and optimization stages. Under each scenario,

we compute the change in predicted vaccinations relative to the Pharmacy-only strategy (also evaluated

under the revised parameter values), and report results in Table C6.

Choice set. For computational tractability, we re-run the optimization model under one alternative value

(M = 10) for the choice set size. With a larger choice set, the marginal benefit of adding dollar stores decreases

as individuals can access more capacity, but at farther locations. Moreover, expanding the choice set affects

HPI groups differentially, as some areas have a higher density of pharmacies so expanding the choice set has

minimal impact on travel distance. High HPI areas maintain similar vaccination gains as before (0.16 million

versus 0.18 million), yet low HPI areas show lower vaccination gains (0.19 million versus 0.30 million).

Capacity. In scenarios with limited per-store capacity, a network expansion strategy can offer substantially

more benefits. When K = 8,000, the predicted vaccination gains with adding 500 dollar stores statewide

exceed 1.3 million, compared to 0.77 million when K = 10,000. Although there is less supply in this setting,

adding dollar stores as vaccination sites can increase vaccination rates across all HPIs even if they are

somewhat distant, due to individuals’ reduced sensitivity to distance (as estimated by the demand model in

Table C5). The net effect is greater vaccination gains.

Our status quo Pharmacy-only policy with K = 10,000 and N = 4,035 pharmacies equates to 40.35 million

possible vaccination slots, and achieves predicted vaccinations of 26.4 million. Under the reduced capacity

scenario of K = 8,000 and the addition of 500 dollar stores, a total of 36.28 million vaccination appointments

are available, and predicted vaccinations are 26.3 million—nearly identical to the Pharmacy-only policy—

due to a more efficient use of appointment slots since dollar stores bring vaccinations closer to individuals’

homes. These insights are relevant, for example, when deciding whether to add capacity to existing FRPP

locations or to allocate additional capacity among new partner locations. Our analysis suggests the latter

may be more effective in our context.

Distance forms. In general, an alternative distance function very modestly changes our optimal results.

Total predicted added vaccinations with dollar stores assuming d̄= 1.0 mile is 0.70 million, versus 0.77 million

in our original analysis. The added walkable vaccinations also decrease (1.40 million versus 1.55 million)

because the model does not prioritize reductions in very small distances. Thus, the vaccination gains mainly

accrue to individuals who live farther from an FRPP pharmacy.
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Table C6 Added vaccinations relative to Pharmacy-only, assuming 500 dollar stores are added statewide

Vaccinations in millions

HPI quartile

Type All Bottom 25% 25-50% 50-75% Top 25%

Choice set
M = 5(†) Total 0.77 0.30 0.14 0.14 0.18

Walkable 1.55 0.74 0.30 0.29 0.23

M = 10
Total 0.59 0.19 0.10 0.15 0.16
Walkable 1.31 0.59 0.22 0.26 0.23

Capacity
K = 8,000

Total 1.31 0.47 0.30 0.26 0.27
Walkable 1.88 0.80 0.44 0.35 0.30

K = 12,000
Total 0.38 0.17 0.07 0.04 0.10
Walkable 1.20 0.60 0.22 0.20 0.17

Distance
d̄= 0.5

Total 0.72 0.26 0.12 0.15 0.19
Walkable 1.38 0.62 0.27 0.26 0.23

d̄= 1.0
Total 0.70 0.26 0.12 0.14 0.18
Walkable 1.40 0.63 0.27 0.26 0.24

Note. (†) denotes our main scenario. All other partnerships report added vaccinations relative to Pharmacy-only,

which is being evaluated under the same parameter setting.

C.3. Alternative partnerships

We consider expanding the FRPP network with an alternative private partner, Starbucks coffee houses,

or public high schools. Table A2 summarizes the number of partner locations. Similar to the dollar store

partnership, we assess the effects of network expansion with A= {100, . . . ,1,000} added locations statewide.

Figure C2 shows the predicted increase in vaccinations by HPI quartile for each partnership. Adding 500

Starbucks locations yields approximately one million additional vaccinations, with 35% of the gains accruing

to the top HPI quartile. In contrast, strategically adding 500 high schools achieves a predicted 1.05 million

additional vaccinations, with 36% of the vaccinations occurring in the bottom HPI quartile. Notably, over

50% of these benefits are obtained by strategically adding only 100 high school locations.

Figure C2 Added vaccinations relative to Pharmacy-only, assuming network expansion with A={100, . . . , 1,000}

partner locations statewide
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C.4. Network replacement

We use the optimization model to strategically redistribute capacity within the network. Rather than increas-

ing the total number of locations, the model helps us determine the most effective way to transfer capacity

from existing FRPP pharmacies to selected partner locations. This strategy preserves the current size of the

vaccine distribution network in terms of both the number of distribution points and the overall capacity (we

set N = 4,035, the number of FRPP locations).

Under this capacity-neutral scenario, predicted vaccinations increase by 0.69 million statewide, a gain of

2.6% over the Pharmacy-only policy. Figure C3 summarizes the predicted added vaccinations by HPI. We

note a sizeable increase in walkable vaccinations (0.65 million) among those in the lowest HPI quartile.

Overall, the model replaces 626 FRPP pharmacies with dollar stores. Figure C4 shows the changes in the

number of vaccination locations within each HPI quartile. The lowest HPI areas see a net gain in vaccination

sites, primarily through the addition of selected dollar stores. Higher HPI areas have fewer vaccination options

nearby, because they currently have excess capacity and they are less sensitive to longer travel distances.

Figure C3 Added vaccinations relative to Pharmacy-only, under network replacement with dollar stores
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