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Abstract Infectious diseases continue to threaten many populations worldwide, and timely con-
trol of these epidemics is a global health priority. Mathematical models can be used
to estimate the expected costs and benefits of alternative disease prevention, diagnos-
tic, and treatment interventions and, ultimately, to aid policy makers with allocating
limited disease-control resources. In this tutorial, we describe a variety of operations
research-based models that can be used to analyze such problems. We describe mod-
els ranging from simple linear models and decision trees to complex network-based
simulations. We also describe Markov models with single or multiple decision epochs,
individual microsimulation models, population-level dynamic compartmental models
(both deterministic and stochastic), and linear programming models. We illustrate
each class of model with a published example, focusing on models developed to assess
HIV/AIDS prevention and treatment policies. We also discuss decision and model
scope, potentially relevant model outcomes, and possible decision criteria for imple-
menting particular health interventions.
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1. Introduction

Infectious diseases pose a significant burden to public health. Each year more than 13 mil-
lion people die from infectious diseases, representing approximately 25% of deaths and 50%
of premature deaths worldwide (World Health Organization [45]). Infectious diseases dis-
proportionately afflict developing countries (Table 1) and children (Mathers et al. [30]).
Among adults aged 15 to 59 in low- and middle-income countries, human immunodeficiency
virus (HIV), tuberculosis (TB), and lower respiratory infections (e.g., pneumonia, bronchitis,
and influenza) kill four million people annually, devastating economies and straining frag-
ile healthcare systems (Mathers et al. [30], World Health Organization [46]). Children in
developing countries are particularly vulnerable to contracting infectious diseases: seven of
the top 10 causes of death among children under age 14 are infectious diseases (Mathers
et al. [30]). More than six million children die each year from infectious diseases, with
malaria and diarrheal diseases accounting for three million childhood deaths alone (Mathers
et al. [30]). Other common infectious diseases, including hepatitis, influenza, cholera, dengue
fever, typhoid, and yellow fever, continue to plague many countries, potentially leading to
surges in new cases, such as the recent cholera epidemic in Zimbabwe that infected 80,000
people and claimed 4,000 lives as of February 2009 (World Health Organization [48]).
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TABLE 1. Ten leading causes of death worldwide in 2004 (World Health Organization [46]).

Deaths Deaths
Low-income countries (millions) High-income countries (millions)
Lower respiratory infections 2.94 Coronary heart disease 1.33
Coronary heart disease 2.47 Stroke and cerebrovascular disease 0.76
Diarrheal diseases 1.81 Trachea, bronchus, lung cancers 0.48
HIV /AIDS 1.51 Lower respiratory infections 0.31
Stroke and cerebrovascular disease 1.48 Chronic obstructive pulmonary disease 0.29
Chronic obstructive pulmonary 0.94 Alzheimer’s and dementia 0.28
disease
Tuberculosis 0.91 Colon and rectum cancers 0.27
Neonatal infections 0.90 Diabetes mellitus 0.22
Malaria 0.86 Breast cancer 0.16
Low birth weight 0.84 Stomach cancer 0.14

Note. Infectious diseases are highlighted in bold.

Because of their enormous health impact, control of infectious diseases is a key global
public health priority. A variety of interventions, including vaccination, prevention pro-
grams, and treatment regimens, can reduce new infections and disease-related mortality.
For example, for HIV, a range of prevention programs—including voluntary counseling
and testing, condom promotion, prevention of mother-to-child transmission, education cam-
paigns, needle-exchange and harm-reduction programs for injection drug users, and more
recently, male circumcision (Kahn et al. [23])—have been shown to be effective and cost-
effective methods of preventing new infections. Antiretroviral therapy for HIV-infected indi-
viduals has generated millions of incremental life-years since its inception in 1996 and,
because it reduces infectivity in treated patients (Cohen et al. [10], Erb et al. [16]), has
likely also prevented many new HIV infections. As another example, control of vector-borne
malaria with mosquito bed nets, indoor residual spraying, and prophylactic drugs has pre-
vented millions of malaria infections (World Health Organization [47]). Although a malaria
vaccine is not yet available, results of a recent clinical trial suggest that such a vaccine
may become available in the not-so-distant future (Bejon et al. [4]). Despite such progress,
millions of people continue to become infected and die from HIV and malaria each year.
Similar progress and challenges exist for numerous other infectious diseases.

Although most infectious disease deaths are preventable, resources for disease control are
limited. Thus, when determining the appropriate response to each epidemic, policy makers
at the local, national, and international levels must determine the appropriate allocation of
scarce public health resources. To make informed decisions, policy makers need to know the
likely costs and health impacts of competing disease-control programs. However, estimation
of the costs and health impacts of programs that aim to control an infectious disease is
complicated by the fact that infectious diseases are dynamic (epidemics evolve over time),
nonlinear (the rate of new infection is approximately a function of the number of people
who are infective multiplied by the number of people who are susceptible), and stochastic
(many factors, such as behavioral and biological factors that influence the transmission and
progression of a disease vary across individuals and over time).

This is where operations research (OR) can play an important role: OR-based mod-
els can quantify the likely economic costs and health benefits of disease-control programs,
providing important information about the potential benefits of implementing alternative
interventions, as well as the consequences of failing to do so. OR-based models can also
determine—explicitly or implicitly—the most efficient allocation of limited disease-control
resources.

This tutorial describes a range of models that can be used to quantify the potential
effects of infectious disease-control programs and thus support decision making about which
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programs to implement. We first discuss decision scope and framing, and the consequent
implications for modeling (§2). We next describe relevant health and economic outcomes
(83). We then describe a variety of types of models used to support decision making for
infectious disease control, ranging from simple linear models to complex stochastic dynamic
models (§4). We illustrate each class of model with published examples that were developed
to assess HIV prevention and treatment policies. We conclude in §5.

2. Decision Scope and Framing

OR-based models can be used to inform a variety of decisions about infectious disease
control. The scope of the decision often dictates the appropriate type of model to use. Before
committing to a particular mathematical framework, it is useful to consider a number of
factors. Who are the decision makers? What are their objectives? What are the goals of
the analysis? What information is available about the disease? Answering these and other
questions helps frame the decision problem to determine the type(s) of models that may be
most suitable for addressing the problem.

2.1. Patient-Level Decisions

Some decisions about infectious disease control, such as decisions about treatment strategies,
may be specific to individual patients or specific subsets of patients. In such a case, it is
important to know the likely effect of the intervention on individual patients. Because disease
diagnosis, progression rates, and treatment response may differ for each patient, a model
that captures individual variability may be useful when analyzing such a problem. For
example, among HIV-infected individuals, the increase in viral load in the bloodstream and
the rate of decline in immune system function depends on a number of patient-specific factors
(e.g., patient age, comorbidities, and time since infection) as well as chance. To capture the
variable effect of HIV treatment on patient outcomes, constructing a patient-level model is
essential. Models of individualized HIV disease management often include a complex array of
health states and transitions between health states, but typically ignore or approximate the
effects of disease transmission on other individuals in the population (Freedberg et al. [17],
Paltiel et al. [37], Sanders et al. [41]). Such a framework is most appropriate for informing
patient-level decisions (e.g., when should an individual begin a treatment regimen, how often
should a patient receive viral load monitoring, etc.).

2.2. Population-Level Decisions

A higher-level decision relates to disease control in an entire population, such as decisions
about broad-based prevention and vaccination programs. For these decisions, it is important
to know the likely populationwide consequences of alternative programs. This societal per-
spective aggregates across the entire population the net health benefits and economic costs
associated with each disease-control measure. For example, when considering rapid national
scale-up of HIV treatment or the introduction of universal HIV screening, a national health
ministry would want to estimate the future course of the HIV epidemic under different
program scenarios, and the associated populationwide program costs and healthcare costs.
Instead of considering the best course of action for a single individual, the decision maker
who is considering broad-based interventions must balance the interests of individuals with
those of the entire population. This is especially critical for eradicating or diminishing infec-
tious disease epidemics. For example, many parents choose not to vaccinate their children
against measles because they fear potential adverse side effects, but mathematical models
suggest that a minimum measles vaccination coverage of 90%—95% is needed to achieve herd
immunity in a population (Wallinga et al. [44]). Although the optimal individual decision
may be to decline vaccination when most others in the population are vaccinated, the optimal
decision from a societal perspective is to promote or require mass childhood vaccination.
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Population-level decisions are inherently more complex than patient-level decisions
because each individual may be acting independently, and the decision maker needs to bal-
ance these competing interests. The advantages of using a societal perspective instead of a
patient-level perspective are amplified when modeling an infectious disease because of the
potential externalities. An individual with heart disease who fails take medication impacts
no one else, whereas a patient infected with a communicable disease such as TB who poorly
adheres to treatment can infect other people with a more severe drug-resistant strain. The
primary disadvantage of societal-based models is their simplification of individual variability
and differences in the natural course of the disease and treatment effectiveness.

2.3. Resource Allocation

The goal of modeling infectious disease epidemics is not only to estimate future economic
and health outcomes under different control scenarios but also to determine the optimal
allocation of limited resources between competing interventions. In its most general form,
one can think of this as a problem of optimizing health benefits subject to a constraint on
available resources and perhaps other constraints. The appropriate resource allocation crite-
rion will depend on a number of considerations, including budget constraints, political will,
reimbursement precedents, and demands from patient advocates. Many tools from opera-
tions research, such as decision analysis, optimization, and control theory, have been applied
to resource allocation decisions in health care to quantify the trade-offs of implementing
alternative strategies.

Cost-effectiveness analysis and cost-benefit analysis are standard tools for comparing the
costs and benefits of two or more medical interventions (Gold et al. [20]). The incremental
cost-effectiveness ratio (ICER) is calculated as the marginal cost of an intervention divided
by the marginal benefit. It measures how much additional “bang for the buck” could be
achieved by switching from one intervention to another. This can be written as

ICER = COStSWith Intervention — COStSWithout Intervention

BeneﬁtsWith Intervention — BeneﬁtsWithout Intervention

Before determining the optimal disease-control policy, decision makers must choose the
appropriate decision criteria (that is, they must choose how to select programs based on
the cost-effectiveness information) and appropriate constraints (these may include budget
constraints, limitations on allowable allocations of resources, etc.). We now discuss three
possible ways of framing the resource allocation problem.

2.3.1. Cost-Effectiveness Threshold. One possible decision criterion is to define
a cost-effectiveness threshold and then implement any health intervention below this
threshold; such an allocation makes the implicit assumption that funds not spent on a par-
ticular program (one that is above the cost-effectiveness threshold) could be spent elsewhere
on a cost-effective program (below the threshold) that targets another population or another
disease. In the United States and Western Europe, a threshold of $50,000 or $100,000 per
quality-adjusted life year (QALY) gained is often cited, based on the historical cost effective-
ness of kidney dialysis, a commonly implemented intervention (Ubel et al. [43]). However,
many critics argue that this threshold was arbitrarily chosen and has not altered over the
past 20 years (Ubel et al. [43], Braithwaite et al. [8]). Indeed, many commonly accepted
health interventions cost more than $100,000 per QALY gained; for example, many women
in the United States continue to receive annual Pap smears for detecting cervical cancer at
an estimated cost of $675,000 per QALY gained (Eddy [14]). The World Health Organization
has set guidelines for cost effectiveness in developing countries: interventions are deemed
cost effective if they cost less than three times the annual gross domestic product (GDP)
per capita and highly cost effective if they cost less than the GDP per capita (Murray et al.
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[35]). This has prompted a call by researchers to reassess the definition of “cost effective”
in many settings (Ubel et al. [43], Braithwaite et al. [8]).

2.3.2. Budget Limitation. An alternative decision rule is to rank a list of interventions
by their incremental cost-effectiveness ratio, from most favorable to least favorable. The
decision maker can go down the list and select interventions until a predefined budget
is exhausted. Although in principle this avoids the undesirable task of determining the
monetary value of a year of life, in practice it is often difficult to determine the appropriate
budget. With multiple payers, including patients, insurance companies, public sector payers
(e.g., Medicare and Medicaid), it is unclear if such a budget threshold even exists, let alone
what value the threshold should take. If medical interventions offer substantial gains in
health benefits, perhaps it is wise to increase the funds available for such interventions?
These considerations make this decision rule difficult to implement in practice.

2.3.3. Equity Constraints. Policy makers may want to consider objectives other than
economic efficiency, such as equity among population groups or programs. For example, state
health departments may wish to allocate disease prevention resources among counties in
proportion to their population, without regard to disease prevalence in each county. A pro-
portional allocation of resources among population subgroups (or among disease-control
programs) may achieve equity, but often this is at the expense of program efficiency (Kaplan
and Merson [24]). Policy makers could consider these competing objectives and allocate
resources in a way that balances equity and efficiency.

3. Relevant Outcomes

Good decision making about infectious disease control requires careful estimates of relevant
health and economic outcomes (Drummond et al. [12]). In this section we describe the
different types of outcomes that may be appropriate to include in an OR-based model of
infectious disease control.

3.1. Economic Outcomes

The economic cost of a medical intervention includes the direct cost of the intervention
itself (e.g., prescription drug cost, vaccine cost, prevention program cost, etc.) as well as
all indirect costs of related health care (e.g., hospital visits, ancillary services, etc.). If the
medical intervention lasts for a finite amount of time, the model should also capture future
healthcare costs occurring after the completion of the program. One caveat to this approach,
however, stems from the ongoing debate among economists regarding whether future costs
should include medical costs unrelated to the intervention under consideration (Garber and
Phelps [18], Meltzer [32], Lee [28], Garber and Phelps [19], Meltzer [33]). The debate centers
on whether the cost of an intervention leading to reduced mortality should include future
healthcare consumption or if this is implicitly accounted for with increased survival.

For example, suppose an individual infected with latent TB receives isoniazid prophylaxis
for six months to prevent active TB disease. Assuming future costs are included, a model
of this intervention should include the cost of the prophylaxis, all costs of related clinical
visits, adherence services, etc., and healthcare costs after six months, to capture the future
costs associated with preventing active TB disease. Last, all costs should be discounted to
the present, typically at an annual rate of 3% to 8% (Gold et al. [20]).
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3.2. Health Outcomes

The counterpart to an intervention’s cost is the expected health benefit it generates in the
population. Outcomes specific to a particular disease or intervention—such as number of
infections averted or number of children who die—are often relevant when comparing inter-
ventions for controlling a particular disease, but such outcomes fail to provide a universal
standard when comparing multiple diseases.
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To compare across diseases and interventions, a more standard metric such as life years or
quality-adjusted life years (QALYSs) is needed. Life years account for variations in mortality;
QALYs additionally adjust each time period based on the patient’s quality of life. In a
mathematical model, QALYs are computed by integrating the amount of time spent in
different health states, multiplied by the quality-of-life (QOL) factor for each health state.
For example, an individual who lives for three months in perfect health (QOL 1.0), then
spends six months in a moderately sick health state with QOL 0.8, and then another three
months in a state with QOL 0.4 before dying would experience 0.75 total QALYs (0.25 x
1.0+ 0.5 x 0.840.25 x 0.4 =0.75). As with costs, health benefits should also be discounted
to the present at the same rate. If this important step is missed, then the optimal strategy
in the first year would be to defer implementing the program until the second year because
it costs less but attains the same health benefit, and this would continue ad infinitum.

3.3. Epidemic Outcomes

Epidemic outcomes may also be relevant for models of infectious disease control. Disease
prevalence refers to the fraction of the population (or number of individuals) infected with
the disease at a particular point in time. Incidence measures the number of new cases
occurring over a period of time (and the incidence rate is the number of new cases per
person per unit time). For example, 1.1 million Americans are estimated to be infected with
HIV, resulting in an HIV prevalence of 0.3%, and HIV incidence is approximately 56,300
new cases per year (an incidence rate of 0.0002 cases per person-year) (Centers for Disease
Control and Prevention [9]).

Another epidemic measure that is sometimes relevant is the basic reproduction number,
(Rp), which is defined as the average number of secondary infections caused by a typical
infected individual during his entire period of infectiousness, in a completely susceptible
population, absent any interventions. Ry represents the strength of an infectious disease at
sustaining itself in the population: when Ry < 1 the disease will die out in the long run;
when Ry > 1 the disease will remain endemic in the population. In general, higher values
of Ry correspond to diseases that are more difficult to eliminate. Ry depends on the average
duration of infectiousness, the probability of transmitting the infection per contact, and
the rate of new contacts between infected and uninfected groups. Some commonly refer-
enced values of Ry are as follows: influenza (2.0-3.0), HIV (2.0-5.0), severe acute respiratory
syndrome (SARS) (2.0-5.0), smallpox (5.0-7.0), and measles (12.0-18.0). Ry should be inter-
preted with caution, however, because it is a theoretical outcome derived from mathematical
analyses. By the time a new epidemic raises public health concerns, the population is no
longer entirely susceptible (some individuals are either infected or immune), and many for-
mal interventions (e.g., school closures, quarantines, prophylactic antibiotics) and informal
interventions (e.g., voluntary social distancing) may be in place. However, Ry can often
support other epidemiologic evidence and can provide a basis for vaccination policies and
other infection control measures.
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4. Classes of Models

We now describe the types of models that are frequently used to analyze infectious disease
control decisions. For ease of comparison between model types, we focus on one disease,
HIV/AIDS, and describe the types of decisions considered and models used. This section
is roughly organized according to model complexity, with the simplest types of models
discussed first and the most complex models discussed last. Figure 1 provides a schematic
diagram of each type of model.
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FIGURE 1. Schematic diagram of models.

(a) Simple linear (e) Microsimulation
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4.1. Simple Linear Models

Simple linear models (Figure 1(a)) can provide transparent analysis of the estimated costs
and benefits of disease interventions. For example, Kahn et al. [23] used a deterministic
linear model to estimate the cost effectiveness of adult male circumcision (which reduces
the probability of HIV infection in heterosexual men) in sub-Saharan Africa. The authors
calculated the cost of the intervention as the sum of the direct cost of the intervention and
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the indirect cost of potential adverse events, such as post-surgery infection:
Costs = (number circumcised X unit cost)+ (number of adverse events x adverse event cost).
The effectiveness of the intervention is measured in number of HIV infections averted:

Effectiveness = number circumcised X (1— HIV prevalence)

xincidence rate x net protective effect x 20 years x epidemic multiplier,
where
net protective effect =1 —[(1 — protective effect) x (14 risk compensation)],

which accounts for the benefits of male circumcision in reducing the probability of HIV
transmission in men (protective effect), and the potential increase in risky behavior because
of a false sense of protection (risk compensation). The epidemic multiplier parameter approx-
imates the number of secondary infections in women that are prevented by circumcising
their male partners.

The analysis showed that under most reasonable sets of assumptions, adult male circum-
cision will not only reduce the spread of HIV but will also reduce costs (Kahn et al. [23]).
Thus, it is a cost-saving HIV prevention program. Although this modeling framework does
not fully capture the changed HIV epidemic dynamics that might accrue from such a pro-
gram, nor other potentially relevant effects (e.g., reductions in other sexually transmitted
diseases because of circumcision), the analysis provides a useful “order of magnitude” calcu-
lation and shows that the proposed prevention program is almost certain to be highly cost
effective. Simple linear models of this type can provide enormous value by identifying key
insights and encouraging the development of more detailed models in the future, if necessary
and appropriate.

4.2. Decision Trees

Both simple linear models and decision trees typically provide deterministic outcomes (e.g.,
expected cost and health benefits of a decision). However, linear models ignore chance events,
whereas decision trees explicitly specify a probability distribution over a set of possible
outcomes. Decision trees (or probability trees) can be used to model a sequence of uncer-
tain events and the resulting outcomes (Figure 1(b)). The cost effectiveness of alternative
intervention strategies can be calculated by comparing the expected costs and benefits for
each strategy (i.e., decision). Decision trees have been used to model both patient-level and
policy-level decisions.

Bertolli et al. [6] developed a patient-level decision model for estimating the benefits of
alternative strategies for preventing mother-to-child HIV transmission and the resulting
mortality among children under age five. HIV transmission can occur prenatally or during
childbirth. Such transmission can be reduced by administering maternal antiretroviral ther-
apy. An infant who is born uninfected to an HIV-infected mother can still contract the virus
later if the mother breastfeeds. However, if the mother abstains from breastfeeding, the child
has a higher chance of dying before age five because of the lack of critical antibodies acquired
from breast milk and the risk of substituting unclean drinking water. Figure 2 presents an
illustrative decision tree for this situation. The decision tree captures the uncertainties asso-
ciated with these possible events, and their effects on HIV infection, other infections, and
mortality.

Decision trees can also be used to compare HIV prevention policies at the population level.
Nakchbandi et al. [36] compared mandatory versus voluntary HIV screening for pregnant
women in the United States. The model includes a cohort of pregnant women who may elect
to receive or refuse prenatal care in the presence of a mandatory HIV screening program. An
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FIGURE 2. Example of a decision tree for estimating the effectiveness of preventing mother-to-child
HIV transmission.

Infected Death
postnatally

No death

Breastfed

Not infected Death

Not infected at postnatally

or before birth

No death

Death

Strategy A Not breastfed

No death
Infected at or Death

before birth
No death

Strategy B

alternative to mandatory screening is voluntary screening, which may reach fewer women
but could reduce the number deterred from receiving care. Once again, the decision analysis
framework allows the authors to include variations in the conditional probability of each
event, given a prior sequence of events. The authors measured the net population benefits
in terms of total HIV-infected and dead infants under different screening policies.

4.3. Markov Models

Decision trees are useful for modeling instantaneous or one-time probabilistic events, but
they fail to capture the effect of spending time in a particular state. Markov models
(Figure 1(c)) achieve this by incorporating a finite-state Markov chain and the correspond-
ing transition probabilities. Health states can correspond to a particular disease stage, or
the presence of treatment or some other disease-related status (e.g., circumcision status,
screening status, vaccination status, etc.). Patients can transition between states accord-
ing to the natural progression of the disease, underlying biological or behavioral factors,
or due to the presence of some control measure. Markov models integrate well with cost-
effectiveness analysis: it is straightforward to sum up the total time spent in each health
state and multiply this by the appropriate quality-of-life factor; costs for each health state
are calculated similarly, and the direct intervention cost is determined with a reward (or
toll) for transitioning between states.

Sanders et al. [41] developed and applied a Markov model to evaluate the cost effectiveness
of HIV screening in the United States. The model follows a cohort of patients over their
lifetime and simulates HIV infection status, viral load, CD4 count (a measure of the immune
system’s strength), treatment status, and deaths from HIV and other causes. The model
incorporates behavioral, clinical, and epidemiologic data, and has been used to estimate the
health benefits and costs of expanded HIV screening in the United States. The findings from
this study and from a microsimulation-based study by Paltiel et al. [37] (described in §4.5)
prompted the U.S. Centers for Disease Control and Prevention to recommend universal HIV
screening of adults and adolescents in all healthcare settings (Branson et al. [7]).
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4.4. Markov Decision Processes

Markov models of the type described in §4.3 typically assume that only one decision is made,
at the start of the model. From that point forward, a sequence of events unfolds according
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to state-dependent transition probabilities. A Markov decision process (MDP) extends a
simple Markov model by allowing for multiple decision points over time (Figure 1(d)). Each
decision epoch is defined by a set of possible health states, S, a set of possible actions, A,
a probability matrix, P,, and a reward matrix, R,.

Po(s,8) =Pr(si11=5"| st = s,as = a).

P,(s,s’) is the probability of transitioning from state s to s’ if action a is taken at time ¢,
and Rg(s,s’) is the immediate reward associated with transitioning from state s to s’ if
action a is taken at time ¢.

The solution to an MDP is calculated recursively and is defined by an optimal policy =
and a value function V. These are written as follows:

7-[-(5) =arg maXZ Pa<57 SI)V(SI)’

V(S) = R(S) + BZ Pﬂ(s) (s, Sl)V(Sl)y

where [ is the one-period discount factor. One disadvantage of using MDPs in cost-
effectiveness analysis is that they typically optimize in one dimension (minimizing costs or
maximizing health benefits). Once the optimal policy is determined, the other metric is also
calculated; then the costs and benefits of optimal policies with different objective functions
can be compared using cost-effectiveness analysis.

Shechter et al. [42] developed a Markov decision process to determine the optimal time to
initiate antiretroviral therapy in HIV-infected patients. Initiating treatment too early can
lead to adverse side effects, drug toxicities, and exhaustion of available treatment options,
whereas initiating treatment too late can lead to the development of AIDS-related symp-
toms and possibly death. For this problem, such a sequential decision model is useful
because patients typically see their clinician at regular time intervals, and physicians must
decide when to initiate treatment based on established guidelines and individual patient
characteristics.

4.5. Microsimulation

Most decision tree and Markov models provide deterministic estimates of the expected costs
and benefits of disease interventions. These models can be extended to include a microsim-
ulation (Figure 1(e)), where a hypothetical cohort of patients can be sent through a model,
with each patient generating one sample path. The mean and variance can then be cal-
culated for all patients, in a manner similar to calculating the average effects in a real
clinical trial. A microsimulation (“first-order simulation”) represents individual patient vari-
ability, whereas a traditional Monte Carlo simulation (“second-order simulation”) accounts
for parameter uncertainty. As an example, consider rolling a “fair” die and receiving
$1 x the number rolled. A deterministic model would calculate the expected payoff ($3.50),
a microsimulation model would repeatedly roll the die and calculate the mean and variance
across all rolls, and a Monte Carlo simulation would replace the payoffs ($1,$2,...,$6) with
probability distributions and repeatedly sample each distribution simultaneously.
Bendavid et al. [5] simulated a cohort of 100,000 hypothetical HIV-infected patients to
estimate the benefits of alternative disease monitoring strategies in patients in sub-Saharan
Africa. For each patient, the model simulates, on a month-by-month basis, age, HIV treat-
ment status, CD4 cell count, HIV viral load, the development of opportunistic infections,
and possible medication toxicity. As another example, the CEPAC (Cost Effectiveness of
Preventing AIDS Complications) model (Freedberg et al. [17], Paltiel et al. [37]), which
is designed to evaluate the effects of screening, treatment, and other programs for HIV-
infected and uninfected patients, simulates HIV disease progression in infected individuals
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over time, and the corresponding rate of immune system (CD4 T-cell count) decline, change
in HIV blood plasma viral load, rate of antiretroviral therapy failure, and opportunistic
infection development. Microsimulation models are useful for characterizing the potentially
vast differences in disease progression, treatment response, mortality, and quality of life
among individuals. However, as with Markov models, many microsimulation models fail to
appropriately capture disease transmission in the population. Two other classes of models—
dynamic compartmental models (§4.6) and network models (§4.7)—are better suited for
projecting the future epidemic.

4.6. Dynamic Compartmental Models

Dynamic compartmental models (Figure 1(f)) are used to project the evolution of an epi-
demic over time. In such a model, the population is divided into a set of mutually exclusive,
collectively exhaustive compartments. Transitions of individuals between compartments over
time are modeled according to a system of nonlinear difference or differential equations.
Compartmental models vary in size and complexity, as well as the underlying mathematical
dynamics.

4.6.1. Simple Deterministic (Analytical) Models. In 1927, Kermack and McKen-
drick [25] wrote a pioneering article discussing the application of nonlinear dynamic systems
to epidemic control. In 1979, Anderson and May (Anderson and May [2], May and Anderson
[31]) applied this theory to many modern infectious diseases. The underlying idea behind a
deterministic epidemic model is to characterize the epidemic by the number of susceptible
and infected individuals over time. This is represented by a system of nonlinear differential
equations. Deterministic compartmental models with few disease states can often be solved
analytically.

One simple model, known as the STR model (susceptible, infected, recovered), is as follows:

ds
— =—0S(t)I(t
= —BS()I1(),
dl
o = BS()I() ~ 1 T(0)
dR
— =I(t).
o =1
S(t), I(t), and R(t) correspond to the number of susceptible, infected, and recovered indi-
viduals in the population at time ¢, respectively. The infection rate is denoted by [, and
the recovery rate is denoted by 7. The recovery rate can be interpreted as the inverse of the
average duration of infectiousness, 1/v. The basic reproduction number can be calculated

analytically:
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The term Ry is proportional to the force of new infections in the population, 35(0), and
the average duration of infectiousness, 1/.

In addition to solving for Ry, one can use Lyapunov’s indirect method to determine the
stability criteria for the steady-state equilibria of the linearized system. For example, Long
et al. [29] determined the disease-free and endemic equilibria of a coepidemic model of two
infectious diseases. Such analyses are useful for calculating the long-run effect of different
control measures on epidemic outcomes and showing the conditions under which an epidemic
could theoretically be eradicated.
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4.6.2. Simple Deterministic (Numerical) Models. As the number of disease states
increases, a compartmental model can more realistically capture the subtleties of disease
transmission and progression. At the same time, however, the model can become analytically
intractable. In this case, numerically solving the system of differential equations is the best
alternative. After specifying initial conditions for each equation, the system can be estimated
by using a numerical solution technique such as a Runge-Kutta method for approximating
solutions of ordinary differential equations.

Zaric et al. [49, 50] developed a deterministic, dynamic compartmental model to estimate
the cost effectiveness of methadone maintenance treatment for injection drug users. The
model captures the benefits of methadone to individuals in the treatment program and, more
critically, to their sexual and needle-sharing partners. The ability to capture the effects of an
intervention (in particular, health effects related to disease transmission) for all individuals in
the population, and not just the effects for those who receive the intervention, is a significant
benefit of this class of models. Whereas Markov models often assume a fixed incidence rate
after an intervention is implemented, compartmental models capture the dynamic evolution
of disease incidence over time as the number of susceptible and infected individuals change.
Moreover, compartmental models can capture the different costs and benefits accruing to
individuals in each different population compartment.

4.6.3. Stochastic Models. Some compartmental models are based on stochastic differ-
ential equations, where the underlying system is based on a diffusion process with the disease
states and time both treated as continuous variables. With a stochastic SIR, model, the
states S(t), I(t), and R(t) are random variables, and a unique sample path can be drawn
on each iteration. The rate of change in infected people over time is represented by the
following stochastic differential equation:

MO _ prwy) + o1y ™D

where

u(I(t) = BI)S(t) —~I(t),
a(1(t)) = v/BI()S(t) +~1(1),
W (t+ At) — W(t) ~ Normal(0, At).

W (t) is a Wiener process with stationary, independent time increments. A more detailed
discussion of stochastic compartmental models can be found in the article by Allen and
Burgin [1]. Stochastic epidemic models are particularly useful when random variations in
model parameters (e.g., infectivity rate, number of contacts, mortality rate) are important,
or if the population under consideration is small and/or heterogeneous (e.g., an sexually
transmitted disease outbreak among adolescents). On the other hand, deterministic compart-
mental models are useful when considering large populations, where model parameters for an
average individual are sufficient. Stochastic models can become computationally intensive,
because multiple simulation runs are required to estimate average epidemic outcomes.
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4.7. Network Models

Perhaps the most computationally intensive technique for modeling the effects of an infec-
tious disease-control program entails modeling each individual in the population and his or
her partnerships. This is known as a network model (Figure 1(g)). In the network represen-
tation of such a model, nodes represent individuals, and links represent contacts between
those individuals (for example, sexual partnerships or needle sharing). As the population size
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increases, the number of possible contacts grows exponentially. Many network models are
therefore limited to isolated or small populations. Each node can contain information about
an individual’s characteristics such as age, gender, health state, and risk behavior profile.
Sophisticated network models can include geospatial coordinates in addition to temporal
information. Such models are especially relevant for diseases with geographic dispersion,
such as the SARS outbreak in 2003. A recent article suggests that modeling and under-
standing the complicated network dynamics underlying sexual partnership formation and
dissolution is a key step in controlling the HIV epidemic (Koopman [27]).

To evaluate the effects of programs that aim to reduce the number of concurrent sexual
partnerships in sub-Saharan Africa (and thus reduce the spread of HIV), Enns et al. [15]
developed a microsimulation model of a population of sexually active males and females.
The model incorporates a dynamic network model of sexual partnerships (including part-
nership formation and dissolution) overlaid with a detailed model of HIV transmission and
disease progression in each individual. The model includes both spousal and nonspousal
partnerships; spousal partnerships are characterized by longer duration but higher chance of
infection transmission than nonspousal partnerships. In addition to partnerships, the model
simulates each individual’s age, HIV infection status, treatment status, and CD4 cell count.
The model assigns a cost and quality of life to each health state, and thus can estimate
the cost effectiveness of different levels and types of concurrent partnership reduction that
may be achieved by a concurrency reduction program. Network models of this type can
realistically simulate important details of disease contact networks, but can be complex to
create and validate, and are usually data and computation intensive.

4.8. Linear Programming Models

Linear programming models can be applied to optimize a linear function (e.g., health ben-
efits) by allowing the decision variables (e.g., investment in a particular intervention) to
vary, subject to a set of constraints (e.g., budget, healthcare capacity, or equity constraints)
(Figure 1(h)). The objective function can depend on baseline disease incidence and the level
of investment in each intervention (i.e., the intervention’s production function). A linear
objective function may be a simple calculation based on the expected gain in health bene-
fits assuming different portfolios of interventions are implemented. More complex nonlinear
programming may include an underlying disease model, such as a dynamic compartmental
model, to capture the effects of disease transmission on health outcomes.

In 2001, the Institute of Medicine commissioned a report to develop guidelines for allocat-
ing HIV prevention resources in the United States (Committee on HIV Prevention Strategies
in the United States [11]). The authors presented a linear programming framework for max-
imizing the number of HIV infections averted by deciding how to allocate resources among
risk groups (men who have sex with men, injection drug users, and high-risk heterosexuals)
in all 50 states. The model estimated the baseline incidence in each risk group, the maximum
number of people reached within each population, the program’s effectiveness at prevent-
ing new infections, and the per-person cost of each program. Using the existing available
budget, the authors estimated the amount by which an efficient allocation could increase
averted HIV infections. Other examples of linear programming applications for allocating
HIV resources have also been documented (Earnshaw et al. [13], Richter et al. [40]).
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5. Discussion

Infectious diseases impose a significant burden on public health. OR models can play
an important role in informing—and improving—decisions about how to allocate scarce
infection-control resources. A variety of models, ranging from simple linear calculations
to complex dynamic models, are useful for modeling the effects of possible infectious
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disease control interventions. Development of such a model may include concepts from
areas such as health outcomes analysis (Drummond et al. [12]), cost-effectiveness analysis
(Gold et al. [20]), decision analysis (Raiffa [39]), Markov models (Howard [22]), Markov deci-
sion processes (Howard [22], Puterman [38]), microsimulation (Mitton et al. [34]), infectious
disease modeling (Anderson and May [3]), network modeling (Knoke and Yang [26]), and
optimization (Hillier and LIeberman [21]). The appropriate model depends on the decision
under consideration, as well as available data. OR’s “next top model” is one that helps
generate a significant improvement in global health.
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